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A B S T R A C T  

In this paper we study existence and classification questions concerning 
antipodal vector bundle monomorphisms u (i.e., u is regularly homotopic 

to its negative -u ) .  In a metastable dimension range the singularity ap- 
proach yields complete obstructions which, however, have to be weakened 
usually in order to become computable. In many situations we determine 

the resulting "weak, stable" invariants completely; a central role here is 
played by the antipodality obstruction vi(a, ¢]), a curious combination of 

Stiefel-Whitney classes. Moreover, in some sample cases we describe pre- 
cisely how much information gets lost by the transition to these weaker 

invariants. This involves, e.g., identifying some classical second order ob- 
structions. As an application we exhibit a setting where the difference 

invariant d(u, -u)  distinguishes all (and in fact, infinitely many) regular 
homotopy classes. Also, we give complete existence and enumeration re- 
sults for nonstable and stable tangent plane fields on complex projective 
spaces in terms of explicit numerical conditions. 

I .  I n t r o d u c t i o n  a n d  s t a t e m e n t  o f  results  

Le t  c~ a a n d  fib d e n o t e  rea l  vec to r  b u n d l e s  of  t h e  i n d i c a t e d  d i m e n s i o n s  a _< b over  

a c o n n e c t e d  c losed  s m o o t h  n - d i m e n s i o n a l  m a n i f o l d  N .  
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Definition: A vector bundle monomorphism u: a ~+ fl (i.e., an injective 

continuous vector bundle homomorphism over the identity map idN) is called 

a n t i p o d a l  if u and - u  are regularly homotopic (i.e., homotopic through vector 

bundle monomorphisms). 

In this paper we are concerned at first with the existence problem of such 

antipodal monomorphisms. This amounts to the following two partial questions 

which we wilt attack by the singularity method (cf. [K 1]). 

Question A: Is there any monomorphism u: a ~ fl? 

If yes, it restricts to an injective linear map on every line in any of the fibers 

a~, x E N. In other words, if u exists then there is also a monomorphism from 

the canonicM line bundle A over the projectification P (a )  of a into the pullback of 

/3; equivalently, the vector bundle Horn(A,/3) TM A @/3 over P ( a )  allows a nowhere 

vanishing section s~. 

Now, given any generic section s of A ® ~ we obtain the following singularity 

data: 

(i) 

(ii) 
(iii) 

the (n + a - 1 - b)-dimensional manifold Z := s-X{0} formed by the zero 

set of s; 

the continuous map 9: Z C P(a ) ;  and 

the stable vector bundle isomorphism 

(I.1) -~: TZ~g*(A®/3@R) ~ g*(AQa®TN) 

(which is deduced from the obvious identification of A ® fl I Z with the 

normal bundle of Z in P ( a ) ) .  The resulting normal  bordism class 

(i .2) = [ z , g , y ]  e 

(with coefficients in the virtual vector bundle 

(I.3) ¢ : = A ® ~ - A ® a - T N  

over P ( a ) )  is an obstruction to the existence of nowhere vanishing sections 

in A ®/~ and hence of monomorphisms from a to/3. Actually, in a certain 

"metastable" dimension range it fully answers our first question. 

THEOREM A (cf. [K 1], 2.15 and 3.7): A s s u m e  n < 2(b - a). Then a mono-  

morphism u: a ~ 13 exists  i f  and only i f  w(a,  fl) = O. 
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Question B: Given a monomorphism u: a ~ ~, when is it regularly homotopic 

to its negative - u ?  

In this situation the singularity approach outlined above yields the difference 
obstruction 

(I.4) d(u , -u )  C ~n+~-b(P(c~); ¢) 

which again settles our question in a suitable dimension range. 

THEOREM B (cf. [K 1], 4.14): Assume n + 1 < 2 ( b -  a). Then a monomorphism 

u: a ~-+ fl is antipodal if and only if d(u, - u )  -- O. 

Actually, in these dimensions monomorphisms u - -  if they exist - -  are com- 

pletely classified by the difference obstruction d(u0, u) where u0 is fixed. But this 

is an external invariant based on the comparison with some other, arbitrarily se- 

lected monomorphism u0. It would be desirable to distinguish monomorphisms 

u by their internal geometry, e.g., by the properties of the complement of u(a) 

in/3 or by the antipodality obstruction. In particular, we will be interested in 

the question how many different regular homotopy classes the internal invariant 

d(u , -u )  can detect. 

We can bring together most of the existence and classification aspects of the 

obstructions discussed above into one unifying setting. Let ~ denote the nontrivial 

line bundle over the circle S 1. 

Question C: When is there a monomorphism 

~ : 5 : = ~ ® a ~ / ~  

over/V := S 1 x N? (We drop obvious pullbacks from the notation.) 

Note that the a-plane bundle ~ over S 1 x N can be interpreted as the mapping 

torus of the antipodal isomorphism - i d a  over idN. Thus the required mono- 

morphism ~ consists basically of a monomorphism u: a ¢-~ /~ over N, together 

with a regular homotopy from u to u o ( -  ida) = - u .  As before the singularity 

method yields the obstruction 

(I.5) w(a,/~) • f~n+~-b(P(a); ¢) 

in the normal bordism of P(3)  with coefficients in the virtual vector bundle 

(I.6) ¢ := A ® j3 - A ® ~ - T N  

(where A denotes the canonical line bundle over P(~)) .  
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THEOREM C: An antipodal monomorphism u : a ~ fl over N exists i f  and only 

i f  there is (any) nmnomorphism ~: ~ L+ [7 over S 1 x N .  In the dimension range 

n + 1 < 2(b - a) this holds if and only i/co(~,fl) = 0. 

It, is the pro'pose of this paper to investigate and exploit, the three obstructions 

co(a. fl), d ( u , - u )  and co(a, fl) (occurring in Theorems A, B, and C) and their 

relations among each other and with classical invariants. A central tool is the 

following commuting diagram (which will be established and discussed in sections 

1 and 4: see also (I.12) and (I.13) below). 

d('..o, u) 

f~.(P(c~): ¢) 

d(,., -',,,) o. 
8" 
ftx.(P(,*): ,l,) 

03 ((~¢, [~) incl, 

6" 
[ [l~.(P(a): q$) 

~,(~, fl) 1 ~ 
6" 

i (I.7) 
• flh.(P ~ x N:¢ )  

forg,t 

77(,,,. -,,,) ]a. 
~" /g lk(N)  i fa  ~ b (rood 2): 

ro,.g~ " ~k(P  x x N:¢)  ~ [~a.(N:Tl) O g l k _ l ( N  ) else 

m ~fflk(TV) if a ~ b (rood 2); 
-- > fiA'(P=x~r;¢)m(fik(N;;7)mglk_l(N) else forg~ 

• P ~ N k - I ( N )  if a ~ b (rood 2); 
forg .... ~ k _ l ( P  ~° X N;~) ¢ (~k_l(X;~/) *91k-2(N) else 

DIAGRAM (I.7) 

Here N := S 1 x N. Both vertical long exact sequences involve Gysin 

isomorphisms (cf. §1). For k = n + a - b our obstructions fit in as indicated: 

(I.8) (co(a,77)) = co(a,77); 

moreover, if a monomorphism u: a ~ / 7  exists and hence w(a, 77) = 0, then 

g.9) incl.(d(u, - u ) )  = w(& fl); 

finally, for any two monomorphisms u0, u: a ~-~ fl we have 

(I.10) +O.(d(uo, u) ) = d ( u , - u )  - d ( u o , - u o )  

(= d(u, - u )  if u0 happens to be antipodal).  

Thus diagram (I.7) is also very relevant for the classification problem. 
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Question D: How many different antipodal monomorphisms u: a ¢-+ /3 exist? 

What  is their percentage among all monomorphisms? 

Clearly, if (ut: a ~-+ fl)teI is any regular homotopy of monomorphisms and if 

u0 is antipodal, then so is ut for every t C I. In particular, classifying antipodal 

monomorphisms up to standard regular homotopy amounts to classifying them 

up to deformations through antipodal monomorphisms. 

THEOREM D: (i) I f  n < 2(5 - a) then 

{ d ( u , - u )  E ~n+~-b(P(a) ,  ¢) l u: a ~-+ /3} = incl ,  l(w(~,/3)); 

i f  even n + 1 < 2(b - a) and i f  On+~-b is injective, then tile antipodality obstruc- 

tion d ( u , - u )  classifies all monomorphisms u: a ~-~ /3 completely up to regular 

homotopy. 

(ii) Assume that n + 1 < 2(b - a) and that an antipodal monomorphism Uo 

exists. Then the difference invariant d (uo , - )  establishes a bijective correspon- 

dence between all regular homotopy classes of antipodal monomorphisms and the 

elements of  ker On+a-b. 

In particular, all monomorphisms from a to /3 are antipodal if  and only if  

an+a-b -~ 0 (or, equivalently, incl~+a_b is injective). 

In general, the smaller ker(incl.) = O.(f~n+~-b(P(a); ¢)) the bigger the relative 

size of ker On+a-b and hence the percentage of antipodal among all monomor- 

phisms. The two extreme opposites spelled out in Theorem D can actually occur. 

The case c9. = 0 is discussed in detail in [KMS]; actually, in view of the identity 

(1.3) below, it can also be described by some kind of "antipodality condition 

on the bordism level". On the other hand, in Examples G and H and in sec- 

tion 5 below we will encounter various concrete situations where 0. has a very 

small kernel; in particular, we will exhibit a setting where d(u, - u )  is a complete 

internal invariant which distinguishes all (and, in fact, infinitely many) regular 

homotopy classes of monomorphisms. 

Finiteness questions arising in this context are settled quite generally by the 

following result which will be proved in §2. 

COROLLARY: (i) Assume that co(a, fl) = 0 and n < 2(b - a). Then the in- 

variant d(u, - u )  distinguishes infinitely many regular homotopy classes of mono- 

morphisms u: a ~-~ /3 if  and only if  a and b are odd and H~+~_b(N; ~ )  ~ O. 

(ii) Assume that co(5,/3) = 0 and n + 1 < 2(6 - a). Then there are infinitely 

many regular homotopy classes of antipodal monomorphisms if  and only if  b is 

even and one of the following two conditions hold: 



34 U. KOSCHORKE Isr. J. Math. 

1) a is odd and Hn-b+t(N; QS-TN) ~ O; or: 
r Q # 0  2) a is even and ker T2+a_ b ~ coke Tr~+a_b+l 

(where--up to isomorphisms-- 

(I.11) TiQ: H,(N;Q n) , Hi -a(N;~-TN)  

denotes the homomorphism which occurs in the Gysin sequence of a). 

Here and later, given a virtual vector bundle ~' over a suitable space X, the 

twisted rational (or integer, resp.) coefficient system corresponding to the orien- 

tation line bundle 47 of 7 (i.e., w1(~7) = w1(7)) is denoted by Q7 (or Z~, resp.). 

Moreover, we put for short 

(I.12) ~ : = / 3 - a - T N E K O ( N )  and ~ : = / 3 - ~ - T N • K O ( N ) .  

Our singularity obstructions and the normal bordism groups in which they lie 

are strong but usually hard to compute. Therefore it is meaningful to also study 

weakened versions which are more accessible. For example, we may replace stable 
vector bundle isomorphisms such as ~ in (I. 1) by the corresponding isomorphisms 

~z ~ g*(~¢) of orientation line bundles; similarly, we may forget that the canon- 

ical line bundle A over P(a) lies in the pullback of a and retain it only as an 
abstract line bundle with classifying map into infinite projective space poo. This 

procedure defines the forgetful homomorphisms forg. and forg. in the diagram 

(I.7) above as well as their target groups. For example, if ¢ is orientable, we are 

just dealing with the usual oriented bordism groups of poo × N. But in any case 

the resulting "twisted" oriented bordism groups can be entirely described --as  

indicated in (I.7)-- by unoriented and twisted oriented bordism groups of N and 

/Y (see [K 3], 1.3). 
Often this allows us to evaluate the "weak stable versions" 

d(u, - u )  := forg~+a_b(d(u, --u)), 

(I.13) ~(5,/3) :=fOrgn+a_b(W(~,/3)), and 

~(a,/3) := fOrgn+a_b_l(W(O~,/3)) 

of our three obstructions (compare (I.7)). 

For this purpose we introduce the following combination of (dual) Stiefel- 

Whitney classes of/3 (and a): 

i 
(I.14) v~(a,/3) := E ( a  + j)~j (a)wi-j (/3) • H i(N; Z2), i • Z. 

j=o 
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(Since this sum involves only every other  summand of wi(/3 - a)  = 

E@j(a)wi_j( /3) ,  we may, in a way, interpret  vi(a ,  fl) as being "one half  of 

w~(/3 - a ) " .  The  relevance of bo th  classes stems from the fact tha t  they oc- 

cur as components  of w(/3 - ~) • H * ( S  1 x N;  Z2), of. formula 3.5 below.) 

If a - b(2) (and a < b), consider also the classical pr imary  obstructions (in the 

sense of [S], 35.3) 

(I.15) ~(a,/3) E Hb-a+l (N;~ f l -a )  and ~(~,fl)  E Hb-a+l(xl × N ; Z ~ _ ~ )  

to sectioning the obvious bundles U Mono(a~,  ft ,)  and U Mono~(5~, fl~), i.e., to 

finding monomorphisms u: c~ ¢-+ fl and ~: 8 ~-~ /3, respectively. Similarly, if u 

exists, let 

(I.16) ~ ( u , - u )  E Hb-a+I (N  x (I, OI); Z~_~) 

be the pr imary  obstruct ion to deforming u through monomorphisms into - u .  

The following table lists necessary conditions (to the right) for the vanishing of 

the weak stable versions of our three obstructions (as indicated to the left hand 

side). 

TABLE 1.17 if a ~ b(2) if a =- b(2) (and a < b) 

-d(u, -u)  =O vi(a,/3) =O vi(a,  fl) =O for i > b - a  and 
for i > b -  a ~ ( u , - u )  = 0 

= o V~_l(a,/3) = 0 and 

w i ( / 3 - a ) = 0 f o r i > b - a  

vi-  t (a,/3) = 0 = wi (fl - a)  for 
i >  b - a + l  a n d ~ ( a , / 3 ) = 0 a n d  

vb-a( ,9) = 0 = 0 

i f a - = b ~ 0 ( 2 )  i f a = b = 0 ( 2 )  

~(a , /3)  = 0 w i ( / 3 -  a)  = 0 w i ( / 3 - a ) = O f o r i > b - a + l  
for i > b - a and ~(o~, fl) = 0 

THEOREM E: We have 2 . ~ ( a , / 3 )  = 0, 2 . ~ ( ~ , / 3 )  = 0 (and 2 . d ( u , - u )  = 0 in 

case a or b is even). 

Furthermore, i f  

(i) a ~ b(2); or 

(ii) n + a - b < 4 ; o r  

(iii) wl ( g ) + wl  ( a ) + Wl (/3 ) = 0 and the torsion of H .  ( g ; Z) consists of  elements 
of  order 2; 
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then the necessary conditions listed in the table above are also sumcient.  

This and the following result will be proved in section 4 below. 

PROPOSITION F: I ra  or b is even, then the homomorph i sm inel, (cf. 1.7) is split 

injective. Hence d ( u , - u )  is independent  of  u: a ~ /3 On fact, i nc l , ( d (u , -u ) )  

coincides wi th  a component  of ~(~,/3) which is well-defined even i f  no mono- 

morph i sm u exists).  

As this whole discussion shows, the forgetful homomorphisms forg k and forg k 

in diagram (I.7) describe essentially the transition fi'om our sharp obstructions 

w(a,/3), w(~,/3) and d ( u , - u )  to classical (first order) obstructions. Thus the 

more subtle aspects (often of higher order) are mainly concentrated in the kernels 

of forg k and forg k. Fortunately, we have some control over these kernels. For 

example, they are always finite if b is odd or if k + 1 < a (for precise criteria 

see Proposition 2.10 below). More importantly, for low k = n -  b + a < a 

our forgetful homomorphisms often fit into exact sequences which allow explicit 

calculations (see [K 3], theorem 3.1, and especially [K 1], theorem 9.3 and the 

"toolkit" assembled there). 

As an illustration of the potential power of all these techniques we discuss 

the case a = 3, b = n + 1 in some detail in §5. Exploiting the deep interplay 

of existence and classification aspects which pervades the whole theory and has 

a focus, e.g., in the first order obstructions vi(c~,/3) we can compute also two 

subtle second order obstructions in the proof of Theorem 5.10. This leads to 

a precise vanishing criterion for w(~,~) and allows us in interesting cases to 

deduce complete existence and enumeration results in terms of explicit numerical 

conditions. 

Example  G: Given integers q > 2, p and Pl , .  - .  ,Pq, consider the vector bundles 

O~ 3 = ~ p  ~ ]I~ and fln+i = Ap 1 G .. • ® Apq G R 

over complex projective space N ~ = CP(q) (where Ak denotes the k-fold complex 

tensor power of the canonical complex line bundle). 

Then there exists a monomorphism u: a ~ /3 (antipodal or not) precisely if 

[I(Pi - P) is divisible by 4 in the case p + Epi ~ q =- 0(2) and I-[(Pi - P) is even 

otherwise. If this is satisfied the invariant d ( u , - u )  distinguishes infinitely many 

monomorphisms in a 1 : 1 (or 2 : 1) fashion according as Epi - (p + 1)q (2) (or 

not, resp.). 

An antipodal monomorphism exists precisely if Pi - P and pj are even for some 

1 __< i ¢ j _< q and- - in  addition in the case p + Epi ~ q (2) - - t h e  Euler class 
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e(u(c~) ±) C Hn-2(N;  Z) of the cokernel bundle of any monomorphism u: c~ ~-+/3 

is divisible by 4. | 

This is shown at the end of §5. As another illustration we establish (in §6) com- 

plet, e numerical criteria for nonstable and stable tangent pIane fields on CP(q). 

Example H: Given q > 2 and p E Z, let Ap again denote the p-fold tensor power 

of the canonical complex line bundle over complex projective space N = CP(q). 

Then: 

(i) There exists a complex vector bundle monomorphism from Ap to the tangent 

bundle TCP(q) if and only if p = - 2  and q is odd (and then the number of 

complex regular homotopy classes is 2). 

(ii) There exists a real vector bundle monomorphism from Ap to TCP(q) if 

and only if p is even, q is odd and q + 1 is an even (or odd, resp.) multiple of p 

according as q =_ 3(4) (or q = 1(4), resp.), and then the number of real regular 

homotopy classes is 4. 

(iii) There exists a monomorphism u from/kp • R to TCP(q) G R if and only 

if p is even and q is odd. When this holds, the antipodality obstruction d(u, -u) 
distinguishes infinitely many different such monomorphisms u, and precisely two 

regular homotopy classes [u], [u'] can have the same value d(u, -u) = d(u', -u'). 
(iv) There exists an antipodal monomorphism from Ap ® ~ to TCP(q) @ R if 

and only if p is even and q -= 3(4), and then their number is 2 (up to regular 

homotopy). 

This yields many concrete situations where real monomorphisms but no antipo- 

dal (or complex) monomorphisms exist. Also, observe the effect of stabilization: 

there are infinitely many nonantipodal monomorphisms in (iii) even though all 
monomorphisms in (i) and (ii) are antipodal due to the complex structures. 

Remark L18: The existence criteria in Example H still hold in the case q = 1. 

However, the resulting vector bundle isomorphisms over CP(1) = S 2 are uniquely 

determined up to isotopy (and in (iii) the obvious reflection). 

The results and techniques of this paper can also be applied to obtain a com- 

plete homotopy classification of line fields or, equivalently, of Lorentz metrics, 

e.g., on all closed manifolds of dimension n - 0(4). Details will be given in [K 5]. 

NOTATIONS AND CONVENTIONS. All (co-)homology has coefficients in Z2 unless 

specified differently; e.g., x = wl(A) C HI(Pk), k >_ 1, and y C HI(S 1) denote 

the generators where A is the canonical line bundle over real projective space pk. 

Over any base space R k denotes the trivial k-plane bundle. For any vector bundle 
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7 the multiplicative inverse of its (total) Stiefel-Whitney class w(7) is denoted 

by w(7); e.g., for any virtual vector bundle 7 - 5 we have w('y - 5) = w(7)~(5). 

Pullbacks (e.g., of vector bundles or cohomology classes) are often not written. 

In order to simplify our notation we omit also the superscript st which was used 
in [K 3] (e.g., by defining ~8~(a,/3) = forg(w(a,/3))) to indicate that forg has also 

a stabilizing aspect. 

§1. The main diagram and the strong invariants 

In this section we establish basic facts about the diagram (I.7) and use it to clarify 

the relations between our ("strong") normal bordism invariants. In particular, 

we prove formulas (I.8), (I.9), (I.10) and Theorem D. 
As in Question C consider the nontrivial line bundle ~ over S 1 and the a-plane 

bundle ~ = ~ ® a over iV = S i × N together with its projectification P(5)  (i.e., 

the manifold consisting of all lines through 0 in any of the fibers ~ ,  x E /~). 

Since ~, P(~) and A are the mapping tori of - i d a ,  idp(a) and - i d a ,  resp., we 

have the natural identifications 

(1.1) ), ~®A 

P ( 5 )  - -  S i x P ( a )  

(A and A denote the canonical line bundles over P(a)  and P(~),  resp.; here and 

in the remainder of this paper we drop obvious pullbacks from the notation). 

Thus we conclude 

(1.2) ¢ = ~ ® A ® / 3 -  A ® a - T N  

(compare (I.6)); intuitively speaking, ¢ is "twisted around S i'' via the antipodal 

map - id~ on/3. 

Now consider the exact normal bordism sequence of the pair (S i, S i -  .) x P (a )  

and use the "Gysin"isomorphism 

dT: f l .+ i (S  1 x P ( a ) ,  (S i - .) x P(a);  ¢)~-~f l . (P(a) ;  ¢) 

defined by taking transverse intersections with the submanifold {.} x P (a )  (cf. 
[D], chapitre I, 3.1, 3.3 and §6). We obtain the vertical exact sequence on the 

left hand side in diagram (I.7) (and, by analogy, also the one to the right hand 

side). Inspecting the inverses of the isomorphisms rh and i .  (where i : P (a )  C 
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(S 1 - *) × P (a )  is an obvious inclusion) we see that the boundary endomorphism 

takes the form 

(1.3) 0, = 4-((-  ida), - id) 

on f~,(P(a);  ¢) (compare (1.2)); here (- idt~),  composes vector bundle isomor- 

phisms ~ (as in (I.1)) with the antipodal map on ~3. 

When we intersect P((~) = {,} x P((~) in S 1 × P(c~) with the zero set of a 

suitable section ~ in ~ ®/3 we get the zero set of the restricted section ~ [ P ( a )  

in A ® ~. This implies formula (I.8) in the introduction. 

Similarly, given any monomorphism u: a ~-+ fl over N and its induced section 

Su in the vector bundle A @ fl over P (a ) ,  a (singular) homotopy from s~ to - s u  

has the same zero set as the resulting section in the mapping torus of - id~®z.  

Formula (I.9) follows easily. 

Moreover, for any monomorphisms u0, u: c~ ~ / 3  we have 

d( -u0 ,  - u )  = ( -  ida), (d(u0, u)) 

and therefore (by (1.3)) 

d(u, - u )  = d(u, Uo) + d(uo, -Uo) + d(-u0 ,  - u )  
(1.4) 

-- d(u0, -u0)  ± O,(d(uo, u)). 

This establishes formula (I.10). 

Next we prove Theorem D of the introduction. If n < 2(b - a) and c E 

incl ,  l(w(5, ~)), then there exists a monomorphism u0: a ~ j3 and every element 

of ~,~+a-b(P(a); ¢) can still be realized as the difference invariant d(uo, u) for 

some further monomorphism u; this follows as in the proof of theorem 4.8 in [K 

1]. In particular, the element 

c - d (uo , -uo)  e ker(incl,) = O,(~tn+a-b(P(oz); ¢)) 

can be written as ±O,(d(uo, u)). Thus, by (I.10), 

c = d(uo , -uo)  + O,(d(uo, u)) = d ( u , - u )  

as claimed. 

Now assume even that  n + 1 < 2(b+ a). Then the difference invariant d(u0, u) 

classifies monomorphisms u (cf. [K 1], 4.14) and so does d ( u , - u )  by (I.10) if 0, is 

injective. If u0 is antipodal, all other antipodal monomorphisms are characterized 

by 
d(u, - u )  = +O,(d(uo, u) ) = 0 
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as claimed. | 

Finally, we give another interpretation of the antipodality obstruction d(u, -u ) .  

Any monomorphism u: a ~-~/3 over N induces a monomorphism from the canoni- 

cal line bundle A over P ( a )  into (the pullback of)/3 and hence a nowhere vanishing 

section su of A ®/3. We obtain a decomposition A ®/3 = IR @ (]R%) ± into the span 

of su and its (b -  1)-dimensional complement over P (a ) .  Consider the obstruction 

w(~, (Rs~) ±) C gt~+~-b (P(a) ;  (~%)± - TP(o~) = ¢) 

to a section without zeroes in this complement (compare (I.2) and (I.3)). 

P R O P O S I T I O N  1.5: For any monomorphism u: a ~-+ /3 over N we have 

d (u , -u )  = ±w(R, ( ~ u ) ± ) .  

Proof." Given a generic section s of (Rs~) ± over P (a ) ,  define a section S of A®/3 

over P ( a )  x I by 
S(x, t) = cos(Trt)s~(x) + sin(Trt)s(x). 

This is a generic homotopy from s~ to - s~  = s_u. Its singularity data (at t = ½) 

coincide with those of s. | 

§2. Rational normal bordism theory 

In this section we prove the corollary to Theorem D of the introduction as well as 

finiteness criteria for the kernel of forg k (cf. (I.7)). We achieve this by tensorizing 

the relevant normal bordism groups with the field Q of rational numbers. 

Let X be a CW-complex all of whose skeletons are compact and let ¢ = 

¢+ - ¢_  be a virtual vector bundle over X. Recall that the rational Hurewicz 

homomorphism 

(2.1) #Q: fti(X; ¢) ® Q-~---+Hi(X; 6¢)  

is bijective for all i C Z (see [D], proposition 5.2). Here Q.¢ denotes the rational 

coefficient system which is twisted like the orientation line bundle ~¢ of ¢ (i.e., 

= w 1 ( ¢ ) ) .  

LEMMA 2.2: Let ~ = ff + ~o be the sum of a c-dimensional vector bundle ~/ 

and a virtual vector bundle ¢o. Then the involution ( -  idv). on f~.(X; ¢) ® Q 

(induced by the antipodal map on if, compare (1.3)) equals ( -1 )  c. identity. 

Proof: In the rational setting the involution depends only on its effect on orien- 

tations (by (2.1)). | 
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In particular, consider the boundary endomorphism Ok on f tk (P(a ) ;¢ )  (cf. 

(I.7) and (1.3)); when tensored with the identity map on Q, it takes the form 

0 Q ~: = + ( ( -  idz).  - id) ® idQ = + ( ( - 1 )  ~ - 1). identity. 

PROPOSITION 2.3: (i) The image of  OA, is infinite i f  and only i f  b is odd and 

Qk(P(c~); ¢) ® Q # O. 

(ii) The kernel o f  Ok is infinite if  and only i f  b is even and f/h:(P(c~; ¢) ® Q # 0. 

(This is also equivalent to coker 0~. being infinite.) 

Proof." The group tlt,(P((t); ¢) is finitely generated since it equals a stable 

homotopy group of a (finite) Thorn complex. Thus tensoring with Q preserves 

exactness. We obtain the cominuting diagranl 

0 ~ (ke r0~ . )®Q , f~k(P(ct); 0) ® Q , ( im0k) ® Q ----> 0 

q 

¢) ® Q 

with exact horizontal sequence. Now, im Ok is infinite precisely if (ira 0k)® Q # 0 

or, equivalently, ((--1) b -- 1)" Qk(P(o~); ¢) ® Q  7 ~ 0. Claim (i) follows, and so does 

claim (ii) by similar argmnents. | 

It remains to decide when f~k(P(a); ¢) ® Q is nontrivial. For this we may use 

the rational Hurewicz isomorphism (2.1) and standard arguments from homology 

theory with twisted coefficients. But it is more in keeping with our geometric 

approach to consider (the rational analoga of) the exact Gysin sequences 

(2.4) 

• .. s t~ f l j (P°°  × N; ¢ ) - ~ t ~ j _ a ( P  °° × N; A ® fl - T N )  -+ ftj_l(P(c~); ¢) - + . . .  

and, for any virtual coefficient bundle ¢, 

(2.5) 

• .. ~ f t j ( P  ~ x N; ¢) t ' ~ j _ l ( P ~  x N; ¢ + A) --~ f t j_ l (S  ~ x N; r*(¢) )  ---~ .. • 

(compare [D], 1.6 or, e.g., [K 3], 2.1). Here Tj and Aj are defined by taking zero 

sets of generic sections s in (the pullback of) ,~ ® c~ and ~, respectively. Since 

we may use the section - s  instead, we have, e.g., that  Tj = (-- id~®~), o Tj and 

hence, by Lemma 2.2, 

(2.6) T? := Tj ® idQ = (--1)aT?; 
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thus T? ---- 0 if a is odd. 
For the same reason (and since S ~ ~ ,) ,  Aj ® idq is always trivial and the 

rational version of the long sequence (2.5) splits into the short exact sequences 

0 ~ ~j(poo x N; ¢ + )~) ® Q -*- ~j(N; ¢IN) ® Q incl. ~j(poo × N; ¢) ® Q ~ 0 .  

proj. 

Now decompose 

(2.7) w1(¢) = cwl(A) + d e H l ( P  °¢ x N; Z2) = Z2 ~ H i ( N ;  Z2). 

If c = 0, i.e., if the orientation bundle of ¢ (and hence ~ j ( P ~  x N; ~b) ® Q) 

does not involve )~ (compare (2.1)), then the rational homomorphism incl, 

above is bijective; indeed, the projection to N induces an inverse. Moreover, 
~j(po~ × N; ¢ + A) ® Q = 0 in this case. We obtain 

LEMMA 2.8: 

{f~ , (N;¢[N)  e Q ~ H , ( N ; Q ¢ I N  ) if  c=O;  
12,(P ° ° × y ; ¢ ) ® Q ~  0 i f c # O i n  (2.7). 

This, together with (2.4), implies 

LEMMA 2.9: 

{ D j ( N ; y ) ® Q ~ H / ( N ; Q n )  i f a - b ~ 0 ( 2 ) ;  
~ j ( p ( a ) ; ¢ ) ® Q ~ _  Hj-a+I(N;Q/3-TN) i f a ~ b = - O ( 2 ) ;  

k Oer r ?  if a ~ b ~ 0(2); 
@ coker T?+ 1 ira =-- b -- 0(2). 

Proof'. If a g 0(2), then ~-.Q = 0 and the rational version of 2.4 shows that 

gtj(P(a);  ¢) ® Q is isomorphic to 

~j_a+l(P  ~ × N; A ®/3 - T N )  ® Q ~ f~i(P °° × N; ¢) ® Q; 

but by Lemma 2.8 one of these summands vanishes while (in view of (2.1)) the 

other summand can be expressed as indicated. 

If a is even, the claims made above follow again from our rational sequence; 

in particular, if also b ~ 0(2) two of our three groups vanish by Lemma 2.8 and 

therefore so does the third. | 

The corollary to Theorem D in the introduction follows now directly from 

Theorems A, B and D as well as from the results (2.1), Proposition 2.3 and 

Lemmas 2.8 and 2.9 discussed above. 

With nearly no extra work, the methods of this section lead also to a better 

understanding of the transition from "strong" to "weak, stable" invariants. 
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PROPOSITION 2.10: Given any j • Z,  the forgetful homomorph i sm 

forg/: f~j(P(a);  ¢) ---4 ~ j ( P ~  x N ; ¢ )  

has an infinite kernel i f  and only i fb  is even and Hj_~+I(N;  ~-TN) ~ 0 (and, 
in case a is also even, v?+ 1 is not onto, c£ (I.11)). 

A n  analoguous result holds for for~-gj (and ~, ¢ and N ) .  

Proof: forgj is the composite of the "stabilizing" (or "inclusion") map st j  (cf. 

2.4) and the homomorphism f j  which retains only orientation information. Now 

the rational Hurewicz isomorphism #? (cf. 2.1) factors through ~ j  = ] j  ®idQ and 

so ~ is injective. Therefore, forgj has infinite kernel if and only if ker(stjQid@ 
0. Our claim follows again from the rational version of the sequence (2.4). | 

§3. T h e  a n t i p o d a l i t y  o b s t r u c t i o n s  vi(a,/3) 

In this section we want to get some hold on the "weak, stable" obstructions 
forg,(w(a,/3)), forg,(w(5,/~)) and forg,(d(u, - u ) )  (cf. (I.7) and (I.13)). For this 
purpose we calculate the values of their images under the mod 2 Hurewicz homo- 
morphisms 

#2 :fL ( P ~  x N; ¢) ~ H,  (PC° × N) and 
(3.1) 

#2 :~, (poo ×/~;  ~) - -4  H,  (PC° ×/Y). 

We encounter --besides standard Stiefel-Whitney obstructions also the highly 
interesting antipodality obstructions vi(a,13) • H i(N) defined in (I.14). 

THEOREM 3.2: 
(i) ~,2(~(,~,/~)) = 0 i f  and only i f  w~(~ - ~) = 0 for i > b - a; 

(ii) #2(~(a,/~)) = 0 iff both wi(/~ - a)  and vi_x(a,  ~) vanish for all i > b - a; 

(iii) when a monomorpb i sm u : a ~ /3 exists, the ant ipodali ty  obstruction 

/A2(d(u , --U)) is independent  o f  u and vanishes precisely i f  v i(a,  fl) = 0 for 

i > _ b - a .  

Proof: Let x E H I ( p  ~ )  and y = wl(~) • H I ( S  1) denote the canonical genera- 

tors. 

For the first claim represent w(a,f~) by the zero set data (Z c P ( a ) , y )  as in 

(I.1) Also pick a complementary vector bundle a ± over N such that a @ a ± = 

N L × N for some L >> 0. The projection onto this summand defines a generic 

section of Horn(A, (~±) -- A ® ~x over p L - 1  x N with zero set P (a ) .  Thus Z 



44  U. K O S C H O R K E  Isr .  J .  M a t h .  

occurs as the zero set of a generic section of the (b + L - a)-dimensional vector 

bundle A ® (/3 G a ±) over p L - 1  × N .  

Now, given j >_ 0 and c E H ' ~ + a - b - j - l ( N ) ,  we calculate by s tandard  tech- 

niques (see, in particular,  formulas (0.18) in [K 3] and (9.9) in [S 1]) 

x~c(m(~(~,/3))) = (xJc I z)[z] 
= xJcw~_,,+L(A ® (/3 ® a ± ) ) [ p L - 1  × N] 

(3.3) = E Xi+JCWb-~+L-i(/3 ® a ± ) [ P L - 1  × N] 
i > 0  

= CWb-a+j+l (/3 -- c~)[N]. 

Clearly, #2(~(a , /3))  = 0 precisely if all these characteristic numbers vanish, i.e., 

if wb-~+j+l(/3 - a)  = 0 for j _> 0. This proves our first claim. 

Sinfilarly, we conclude tha t  #2(~(5, /3))  is trivial if and only if wi(/3 - 5 )  = 0 

for all i > b - a. Thus let us compute  these St iefe l -Whitney classes. 

According to the splitting principle (cf. [H], 4.4.3) we can calculate the total  

class 
w(~) = w(~ ® ~) • H*(S  1 × N)  

and its inverse as if a were a direct sum of line bundles. Thus formally we can 

write 
a 

w(c~) = H ( 1  + zi), w(5) = 1--I(1 + zi + y) 
i = 1  i = 1  

and therefore (since y2 = 0) 

a 

2 ~(~) - l-I(1 + zi + y + z, + (z~ + y)z~ + z~ + . . .  
i = 1  

) z~[(a + z~) + v] 
i = 1  _ o [(a ) (o  )] 

= H ( I + z i ) - 2  H ( l + z i )  +Y  E ( l + z l ) ' " ( l ~ z ~ ) ' " ( l + z a )  
i = 1  i = 1  i = 1  

i = 1  l<jl<j2<-..<jk<a;allj~¢i 
a 

=~(~) + ~ ( ~ ) ~  ~ ( ~  - k)~(~); 
k = 0  

here a summand  zj~ . . . z j h  gets counted once for every i ~ { j l , . . . j k } ,  i.e., 

a l together  a - k times. 
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We obtain for j E Z 

O 0  

Wj(~)  =Wj(O 0 + y E W i ( ~ ) 2 "  (a - j + 2i + 1)wj-2i-x((~) 
(3.4) ~=o 

=Nj (c~) + (a + j - 1)yNj_l(c~) 

and finally for all natural numbers i 

wi(/~ - ~) = E ( ~ j ( a )  + (a + j - 1 ) y~ j_ l ( cO)wi_ j (~  ) 
(3.5) J 

(compare (I.14)). This proves the second claim in Theorem 2.2 and explains why 

the v-invariants play such a central role. 

Claim (iii) now follows easily from the injectivity of the homomorphism 

incl, : H ,  (po~ x N) > H,  (po~ x S 1 x N),  

from its compatibility with #2 o forg, and from relation (I.9). Indeed, if u exists, 

then #2 o forg,(d(u, - u ) )  = 0 precisely if for i > b - a the Stiefel Whitney class 

w~(fl - ~) = yv~-I (c~,/~) vanishes. 

A second, more direct proof of claim (iii) can be based on (the discussion of) 

Proposition 1.5. Using the same standard techniques as in (3.3) we obtain for 

+ d ( u , - u )  = w(R, (~su) ±) = [Z C P(a ) ,y ]  

and for all j >_ 0 and c E H ~+a-b-j  (N)  

= [ z ) [ z ]  

=xJcwb_ (  ® 

=xJcwb-l()~ ® f l)WL-a(A ® a ± ) [ p L - 1  X N] 

=xJc(E(b--i)xb-l-iwi(~)) .ExL-a-kwk(ocL)[pL-1x y] 
\ i>0 k>0 

=c E ( a  + k - j )~k(C~)Wb-a+j-k(~)[Y] 
k>0 

=C(Vb_~+j(a, ~) -- jWb-~+j(fl  -- a))[N]. 

Note that  the last summand to the right vanishes due to the existence of u. Thus 

again we see that  #2 (d (u , -u ) )  is trivial if and only if v b - , + j ( a , ~ )  = 0 for all 

j > 0 .  | 
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Next,  let us s tudy some of the formal  propert ies  of the invariants 

(3.6) vi(a, /3) = E ( a  + j)~j(a)wi_j(/3),  i e Z, 
j>0 

defined for any vector  bundles a and /3  over N (where a denotes the dimension 

of a) .  Clearly we have 

vi (a  • ]~,/3 @ ]~) -- E (a + j + 1)~j  ( a ) w i - j  (/3) 
(3.7) ~ ~ 

=v~(~,/3) + w~(/3 - ~).  

Therefore  vi(ol, ~) does not only depend on the K- theore t ica l  difference/3 - a .  

But  there are further  interesting interrelations with the St iefe l -Whi tney classes 

of/3 - a such as the following "mixed Wu formula".  

LEMMA 3.8: For all i E Z 

Sq l (v~(~ , /3 ) )  = ~1(/3 - ~ ) ~ ( ~ , / 3 )  + iv~+l(~, /3)  + aw,+l( /3  - a ) .  

Proof: Using simple special cases of the s tandard  Wu and C a r t a n  formulas (see, 

e.g., [MS], §8 and in par t icular  p rob lem 8-A),  we obta in  

Sql(vi(a,/3)) = E ( a  + j ) (~ l (a)~j (a)wi- j ( /3)  + (j + 1)w--T~(a)wi-j(/3)) 

+ E ( a  + j)(wl(/3)~j(a)wi_j(/3) + (i - j + 1)~(a)wi_j+x(/3)) 

= w1(/3 - a)vi(a,/3) + E ( ( a  + j - 1)j  + (a + j)( i  - j + 1))~j(a)wi_j+l(/3) 

and the l e m m a  follows since 

a +  ( (a+  j -  1)j + (a+ j ) ( i -  j + 1)) = ( a + j ) . i .  | 

Example 3.9: a = 1. I f  a is a line bundle and /3  has dimension b, then for all 

i E Z  

v~(a,/3) = ~ ~ (~ )2k~_~k( /3 )  = ~ ( / 3 -  2~) 
k>0 

whereas wi (/3 - a )  : ~ j > 0  wl (a) ~ wi- j  (/3). In part icular ,  

Vb_l(O',/3) : Wb-l (O~/3  ) and Wb(/3 --Ol) -~- Wb(Ol~ /3 ) 

(use, e.g., [K 1], 9.9, again). These invariants can have a precise geometr ic  signifi- 

cance already in very simple si tuat ions where they just  measure  0-dimensional  sin- 

gularities. Assume,  e.g., tha t  b = n _> 1. Given any monomorph i sm u: a 1 ¢-+/3n, 
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it follows from Theorem 3.2 that u is concordant (i.e., regularly homotopic in 

/3 @ N) to - u  if and only if 

w.(/3 - 2~) = ~ . (~ ,Z  • R) = 0; 

this condition holds automatically when wt (c~ ® / 3 -  T N )  = wl (c~) and hence the 

concordance obstruction is an integer which lies in the image of A~ and therefore 

must vanish (compare formula (4.2') below). The special case/3 = T N  has been 

discussed in detail in [K 0]. 

§4. T h e  weak  s tab le  o b s t r u c t i o n s  

In this section we study the invariants-d(u,-u) = f o r g . ( d ( u , - u ) ) ,  ~(~,/3)  = 

forg.(w(~,/3)) and ~(c~,/3) = forg.(w(a,/3)). In particular, we prove Theorem E 

and Proposition F of the introduction. 

For Y = N (or N) and p = ¢ (or ¢), let 

(4.1) A: 9t j (P  °c x Y;  qo) ----+ ~ j _ I ( P  °° x Y;  qo + )~), j c Z, 

be the homomorphism obtained by taking zero sets of generic sections in (the 

pullback - -  under the projection to P ~  - -  of) the universal line bundle ~ (com- 

pare [K 31, (1.a)). 
Then we have 

(4.e) A(w(~,/3)) = w(~, Z • ~),  A(w(~,/3)) = w(5,/3 • ~) 

and, if i:/3 ~ / 3  • N: denotes the inclusion, 

(4.29 f ( d ( u , - u ) )  = ~(i.  u , - i .  u) 

for every monomorphism u: a ~ /3. This follows essentially by construction 
(compare, e.g., the discussion preceding (I.1)). 

Now consider the case a ~ b(2). Then 

W l ( ¢ )  = Wl()~) + Wl( /3  --  O~ --  T N )  

and the second projection 7r: P ~  x N --~ N induces the isomorphism 

(4.3) 7r.: ~ k ( P  °~ x N;¢)  ~->Nk(N) 

onto unoriented bordism (see, e.g., proposition 1.3 in [K 3]). Adopting the no- 

tation of (I.2) we conclude therefore that  ~(~,/3) = 0 if and only if all Whitney 
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numbers of [Z, 7r[] E 9~,(N) vanish (see [CF], 17.2). But this holds precisely if 
#2(~(a, fl)) = 0 since w(Z)  = w - l ( ¢ ) [ Z  (by (I.1)) and, on the other hand, 

Wl(A)  IZ  = W l ( Z  ) ± Wl(/~ - c~ - TN)[Z.  

Theorem 3.2 now implies those statements in Theorem E which concern ~(a,/~). 
The remaining claims follow in the same way, and so does Proposition F: just 
note that the projection from N -- S 1 x N onto N induces a left inverse of incL. 

Next we turn to the remaining case a -- b(2). Then wl (¢) = wl ( f l - a - T N )  = 

w1(7) and we get the homomorphisms 

(4.4) ~ , (poo  x N; ¢) *>~,(N; 7)--=-+H,(N; Z~) 

(where Zv denotes the integer coefficient system which is twisted like the orienta- 

tion line bundle of 7; compare (I.12) and (I.15)). The isomorphisms in (I.7) are 
given by ~,  and ~r, o ~  (compare (4.4), (4.1) and (4.3)) or their analogues for/Y. 

Now A maps our weak stable invariants of the pair (a,/~) to the corresponding 
invariants for (a, fl • R) (cf. (4.2) and (4.2')). Again, since a ~ dim(/3 @ R)(2) 

and since v i (a ,~  @ R) = vi(a, fl) the previous discussion establishes all claims 

in Theorem E and Proposition F concerning the second, 9~,-components of our 
weak stable obstructions. 

Thus consider their images under ~ ,  and the Hurewicz homomorphism # (cf. 
(4.4)). We know from [K 1], 5.3 and from Poincar~ duality that 

# o ~ , ( d ( u , - u ) )  = 0 i f f~ (u , -u )  = 0, and 

= 0 = 0 .  

Now assmne that for some dimension j every element of ~ j  (N; 7) is entirely 
determined by its image under #, together with its Whitney numbers (and its 
Pontryagin numbers if w1(7) = 0); this holds, e.g., if j <_ 4 or if condition 

(iii) in Theorem E is satisfied (see [O], 0.13, and [CF], 17.5). Then, given any 
element w = [Z, g, ~] of 12j (P(a) ;  ¢), its image ~ := forg,(w) vanishes precisely 

if ~ ( 5 )  = 0 and # o ~,  (5) = 0. Indeed, the stable vector bundle isomorphism 
implies again that T Z  - -g* (¢) e K(Z)  and therefore w(Z)  = g* (w(~b)) -1 (and 

p(Z)  - g, (p(¢) ) - I  - ( r  o g)*(p(7)) -1 modulo cohomology classes of order 2); 

hence the characteristic numbers of ~,  (~) factor through A(~) and # o~, (~) .  In 

the special cases when w equals w(c~, f~) or d(u, -u ) ,  this implies the corresponding 
vanishing criteria in Theorem E. 

The same argument applies also to w(5, ~3). Moreover, note that the boundary 

endomorphism 0,  in diagram (I.7) is given by multiplication with ±(1 - ( -1 )  b) 
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(compare (1.3)). Thus in the case a - b - 1(2) (when w l ( ~  ¢ wl(~/)) the vertical 

exact sequence to the right hand side in (I.7) contains the exact sequence 

. . . .  ~k(N;r/) ~.=,2; Ek(N;~?) inc~. Ek(SlX N;~ ~ ~k-l(N;~7) . . . .  
~ ~ [ 

- " - ' (4.5) 

as a direct summand and the vanishing criterion for ~(~,/3) follows as before (use 

also the generalized Rochlin theorem 16.2 in [CF] and Lemma 3.8). In the case 

a _= b -- 0(2) we have: wl(~) = w1(~/),0, = 0 and incl, is even split injective, 

again with a left inverse induced by the obvious projection. Thus ~(5,/3) can be 

decomposed into 5(c~,/3) and a second component which is always well defined 

and which agrees with d ( u , - u )  whenever u exists. 

Finally, observe that by (4.2) and the previous discussion 

is the image of an element of order 2 and so is ~(~,/3). This completes the proof 

of Theorem E and Proposition F. | 

§5. T h e  s i ng u l a r i t y  s equences  a n d  some  e x a m p l e s  o f  i n j e c t i v i t y  a n d  

e x i s t e n c e  c r i t e r i a  

The singularity approach allows one not only to decide existence and classifica- 

tion questions concerning (antipodal) monomorphisms, but it also offers powerful 

tools for the study of low-dimensional normal bordism groups (see, e.g., the ex- 

act sequences in [K 1], 9.3, and [K 3], 3.1). We will use them in this section 

to obtain a few concrete applications and illustrations of the general results de- 

veloped so far. In particular, we will be interested (in some sample cases) in 

injectivity criteria concerning 0, (and hence d(u,-u)) as well as forg. We will 

also spell out a few specific existence conditions for antipodal monomorphisms 

even in cases where higher order obstructions have to be determined by rather 

involved geometric arguments. This will then be used to discuss Example G of 

the introduction. 

For most calculations it is important to know the first two Stiefel Whitney 

classes of the coefficient bundles ¢ and ¢ (cf. (I.3) and (I.6)). By standard 
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computations we obtain in H*(P ~ × S i × N) 

Isr. J. Math. 

wi (~)) = (a + b)x + wi 07) + ay and 

(5.1) w2(¢) = ( b - a ~ x 2  + x ( w l ( N ) +  ( a + b +  1)Wl (?})) -b w2(77) 
\ ] 2 

+ y(abx -[- Wl(Ol) -'[- aWl(T/)) 

(where x = wi(A) and y generate H I ( p  °°) and H i ( S  i) c H I ( S  1 x N), resp.; cf. 

also (I.12)). Restriction to P(8)  and to P (a )  C poo x N C po~ x S i x N yields 

the desired formulas, e.g., also for ¢ (where we just have to drop the y-term). 

We will illustrate our theory in the case (a, b) = (3, n + 1). 

First consider the special setting where a and/3 are (real) vector bundles of 

dimensions 3 and n + 1 over complex projective space N n = CP(q). Denote 

by Ai = Ac C C q+i, A-1 = Ac and A~ the canonical complex line bundle over 

CP(q), its complex conjugate and its complement in C q+l, respectively. Also, 

recall the well-known complex isomorphism 

(5.2) TCP(q) "~ Ho_.~(A1, A~) ~ A-1 ®c A~ 

(see [MS], p. 169). Finally, fix the generators z = el()ll) and z2 = w2(A1) of 
H2(N; Z) and of H2(N) := H2(N; Z2). Then wi(¢) = 0 and 

(5.3) w2(¢) = ( q -  1)x 2 +w2(~) 

where w207) = (q + 1)z2 + w2(a) + w2(/~). 
As in [K 3], 3.1, the singularity sequence in theorem 9.3 of [K 1] gives rise to 

the exact sequences 

(5.4) 

and 

(5.4') 

• - ( f - ~  

~2(Nl("S3'[)ei • Z2 )gt2(P(a);¢)~122(N)~2('{)Z2 

Z2~-~e i  := a l ( P  °° x N x B0(2);6+ F ) J - ~ H I ( P  °0) = 7/,2 -e 0 

where f~ is bijective if and only if w2 (¢) # 0. Here we use canonical isomorphisms 

~3(P °° x N; ¢) -~ ~2(N)  ~ H2(N) • Oh = Z2 • 7,2 

(5.5) and 

~2(P °~ x N;¢)  -~ f~2(N) ~ H2(N;Z) ~ Z. 
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The first homomorphism in (5.4) is determined by standard calculations (using, 

e.g., [K 3], 0.18, 1.6 and 2.2) as follows: for any bordism class s = [g: S --+ N] E 

9~2(N) we have 

(5.6) 
f; o ajn(s) =(q + 1)w, (S)2[S] + 

+ g* 

In particular, 

(5.7) h := f [o  aj3 + (q + 1)~: 912(N) > Z2 

is obtained by evaluating w2(~) + (q + 1)w2(c~). 

Now we are ready to analyze the endomorphism 02 of ~2(P(c~); ¢) (cf. (I.7)) 

which plays such a central role in the classification of monomorphisms antipo- 

dal or not (see Theorem D). 

PROPOSITION 5.8: Let O~ 3 and ~2q+1 be vector bundles over N = CP(q), q > 1. 

The following conditions are equivalent: 

(i) 02 is injective on a2(P(a ) ;  ¢); 

(ii) forg 2 is injective on Q2(P(c~); ¢); and 

(iii) qw2(a) + w2(~) + w2(N) ¢ 0. 

If these conditions do not hold, then ker 02 ~ Z2; moreover, ker forg 2 is isomor- 

phic to Z2 G Z2 or to Z2 according as w2(¢) vanishes or not, respectively. 

In any case, forg 2 is onto if and only if w2(a) + w2(fl) + w2(g)  = 0. 

Proo£" Since b is odd, 02 is multiplication by +2 and hence injective on ~ 2 ( P  °e × 

N; ¢) ~ Z (compare (I.7), (1.3) and (5.5)). Therefore ker02 C ker02 o forg 2 = 

ker forg 2. 

If condition (iii) holds or, equivalently, h ~ 0 (cf. (5.7)) then (f~ o aj3, ~) maps 

onto Z2 @ Z2; in particular, the homomorphism f[ o aj3 (which evaluates w2 (¢), 

el. [K 1], 9.3) is nontrivial and therefore so is w2(¢). Thus f[  is an isomorphism 

(el. (5.4')) and forg 2 and hence 02 must be injective (el. (5.4)). 

If h - 0 but still w2(¢) ¢ 0, then the image of (aj3,~) in ~1 G Z2 ~ g2 (~ g2 

is Z2(q + 1, 1). Hence ker forg 2 consists of two elements which are fixed by the 

involution ( - i d a ) , .  It follows that 02 = ± ( ( - i d z ) .  - id) = 0 on ker forg 2 and 

ker 02 = ker forg 2 = Z2 in this case. 

Finally, assume w2(¢) = 0. Then by an observation of C. Olk (see the footnote 

on p. 94 in [K 1]) aj3 = 0, and kerforg 2 ~ O1 has four elements (compare 

(5.4) and (5.4')). Actually, replacing N by a single point in the whole preceding 
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calculation we see that 

O1 ~--- ~ '~2(p2; (b - a),,~) ~ 7/'2q(Va,b) ~ Z 2 (~ 7/, 2 

(use also [K 1], 5.4, and Paechter's tables [P], p. 249). For similar reasons 

as outlined above, ( - i d a ) .  fixes ker r [  = Z2 .  ~ (1)  so that 02 vanishes on 

5 o 5[ (1). But if a bordism class u = IS 1, g, ~] e O1 has a nontrivial image 

f [ (u )  in H I ( P  ~ )  ~ Z2, then ~(u) is not annihilated by 02; in fact, a simple 

geometric argument involving a punctured cylinder S 1 x / - smal l  disk shows that  

02(5(u)) = (~ o 6~(1) (for more details see the proof of theorem 2.2 in [KMS]). 

Thus again ker 02 consists only of two elements. 

The last claim in Proposition 5.8 follows directly from (5.4). | 

Along the lines of the proof above, precise bijectivity conditions for forg can be 

worked out in much more general settings. In turn, they give rise to antipodality 

criteria. Indeed, easy diagram chasing proves the following 

OBSERVATION 5.9: Assume that forg k in diagram (I.7) is an isomorphism for 

some integer k. Then 

(for~'-gk , oh): ak (P(8) ;  ¢) ----+ t2k(P ~ x _N; ¢) @ f tk - l (P (a ) ;  ¢) 

is injective. In case k = n + a - b we have in particular: w(~,fl) = 0 i f  and only 

i f  both w (a, fl) and ~(~ ,  fl) vanish. 

However, this isomorphism assumption (used for a purely algebraic argument) 

is usually far too restrictive. Additional geometric input allows us sometimes in 

much more general situations to decide precisely when the necessary conditions 

co(c~, fl) = 0 and ~(~, fl) = 0 are also sufficient for the existence of an antipodal 

monomorphism or when (and which) extra obstructions come into play. 

For an illustration, we discuss a setting where two higher order obstructions 

(with values in Z2) may play a role and where we can always eliminate one of 

them by a geometric trick in the spirit of Proposition 1.5. 

THEOREM 5.10: Let  a a = ~'  G N and fln+l be vector bundles over a manifold 

N o f  even dimension n > 4, where a ~ is a complex  line bundle a n d / / 1  (N) := 

H i ( N ;  Z2) = 0. A s s u m e  that  w(a ,  fl) and w~-2( f l  - a) vanish. 

Then w(~ , f l )  ¢ 0 i f  and only i f  w201) = 0 on all elements of  order 2 in 

H2(N;  Z), but  there exists g c H2(N; Z) and a monomorph i sm  u: a ~-+ fl such 

that  w2(r])(8) -fi 0 and 2~ is equal to #(~(R, u ( a ) i ) )  (i.e., to the Poincar~ dual 

of the Euler class of  the cokernel bundle u(a)  ± o f  u). 
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Proof: Here clearly w2(77) = w2(a)+w2(~)+w2(N)  (cf. (I.12)). Also, vi(a,/~) = 

wi(~ - a)  for all i C Z so tha t  the assumption above is equivalent to w(a,/3) and 

~(5, /3)  being trivial (by Theorem E and Lemma 3.8). 

Now consider the analoga of the sequences (5.4) and (5.4') for N and N = 

S 1 × N.  Since w2(¢) = xy + . . .  ~ 0 (cf. (5.1)), ~ is bijective and we obtain the 

commuting diagram of horizontal and vertical exact  sequences 

(5.11) 

forg2 ~ w2 (~) 

d 1 °" 1 ~ 
(aj3,Y) ~" forg2 w2(~) 

• Ol • z~ • ~ (p(~) ;  ¢) ~ ~ ( N )  . 

(J~3,~) H I ( S a ) @ H , ( p ~ ) . Z 2  ) f l2(P(a) ;¢)  for~-g2 ~ 2 ( p ~  x ~ ; ~ )  . . . .  

w2(~) forgl 
) Z2 • ~ ( P ( a ) ; ¢ )  , ~a(U) Og~0(U)--~ 0 

(compare (I.7)). 

Since w(a,/~) -- 0 we may choose d G inc121(w(a, j3)) and even a monomor-  

phism u: a ¢-~ fl such tha t  d = d (u , -u )  (el. Theorem D). But  because of our 

assumption on (~ - - t h i s  difference invariant has a very special form: it lies in the 

image of the homomorphism 

i, :  fl2(N;~?) ) ~ 2 ( P ( a ) ;  ¢) 

induced by the inclusion N = P (0  x R) C P ( a ) .  Indeed, due to the complex 

s t ructure  of a '  we can rota te  u I cV in its image to - u  I a ' .  So it remains only 

to deform u I R in the complement  u(cV) -L (of u (a ' )  in /3) to - u  I R. As in 

Proposi t ion 1.5 we see tha t  

(5.12) d = d (u , -u )  -= :ki, (w(R, u ( a ) ± ) ) .  

This suggests to consider also the exact singularity sequence (el. [K 1], 9.3) 

t 
(5.13) z2 ~1> ~2(/; 7)f°r~" a~(N) 
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which is compatible with (the generalization of) (5.4) and (5.4') via i,; the 
H l ( P ~ ) - t e r m  in (5.4') plays no role here and hence the Ol-term takes the form 

Z2" 5~(1) and vanishes precisely if w2(~/) ¢ 0. 

Now recall that by assumption 0 -- ~(~,/3) = incl2(forg2(d)). Therefore we 

may choose ~ e ~2(g )  such that 2~ = forg~(d). If w2(~/)(~) = 0 and hence 

-= forg2(e ) for some bordism class e ~ ~2(P((~); ¢), we may replace d and u by 

d" and ~ in the whole previous discussion where 

But then 

d '= d(~ , -~)  := d - 0, (e). 

0 = forg2(d" ) = ± forg 2 oi, (w(~, ~(c~)±)) 

and d" is a multiple of 33~(1), which may survive in f~2(P(a); ¢) but certainly 

doesn't in (because 0). 
We conclude that  w(~,/3) = incl, (d') vanishes provided the element ~ C Y~2(N) 

discussed above can be chosen so that w2 (~)(~) = 0. This is certainly the case 

if w2(~) = 0 on all of ~22(N) or w207) ~ 0 on the elements of order 2 in ~2(N). 

Otherwise, diagram chasing in (5.11) shows that 

(5.14) ~ := w2(~/)(~) C Z2 

is a well-defined extra antipodality obstruction (and actually the only one), in- 
dependent of the choices of d and ~. For example, given any monomorphism 
u: ~ ~-+/3 (whose existence is guaranteed by Theorem A), put d = d(u,-u) (so 

that  by (5.11) (5.13) 

± forg2(d ) = forg2(w(R, u(c~)±)) = ~(]R, u(c0 ±) e 2. ~ ( N ) )  

and obtain ~ by evaluating w2(~) on any element ~ E Ft2(N) such that  2~ = 

~(R,u(a)±) .  Note that this last expression corresponds to the Euler class 

e(u(a) ±) via Hurewicz and Poincar~ duality isomorphisms (cf., e.g., [K 1], 5.3). 

Remark 5.15: In the proof above we have dealt with that part of the anti- 

podality obstruction w(~,/3) which lies in kerforg 2 and hence in the image of 

H~(S ~) @ H~(P °°) (see the left hand term of the middle line in diagram (5.11); 

the summand Z2 plays no role in ~2(P(~); ¢) since T is onto as in (5.6)). Our 

extra invariant ~ (cf. (5.14)) is well-defined precisely when the H~(S~)-part of 

w(~,/3) is defined without indeterminacy but does not survive in w((~,/3) via 

~, and then these two Z2-obstructions coincide. The Hl (P~) -pa r t  of w(5,/3) 

vanishes due to the special form of c~. | 
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It  remains  to make  the condit ion w(~,/3) = 0 more  accessible - -  at  least in 

some interest ing cases. 

PROPOSITION 5.16: Let  O~ 3 = O~ t @ ~ and/3n-4-1 = /3! ~ ~ be vector bundles over 

an n-manifold N n o f  even dimension n = 2q > 4 (where ~' and jY are complex 

vector bundles). 

In case n = 0(4), w l ( N )  = 0 and w2(a) + w2(/3) + w 2 ( g )  = 0 on H2(N;  Z),  we 

have: there exists a monomorphism from a to fl i f  and only i f  

Cq(fl' - c~')[N] = 0(4). 

In all other cases, such a monomorphism exists precisely i f  wn (/3 - ~) = O. 

Proof: Given a generic complex vector  bundle h o m o m o r p h i s m  u~: a ~ -+ fl '  (or, 

equivalently, a generic section of the h o m o m o r p h i s m  bundle H o v ~ ( a '  ,/3')), we 

m a y  push all its zeroes into a small  ball B C N and then  count  t h e m  algebraically 

by 
Cq(= Cq(/3' - a ' ) [N]  = cq(Homc(a' , /3 ' ) )[N])  • Z = 71-n_1(S n - l )  

(at least if N is orientable).  The  corresponding h o m o m o r p h i s m  u: cr '®R - -+ /~ '~R 

has local obs t ruct ion j ,  (Cq) where the composi te  m a p  

j:  S n-1  ) Vn, 2 C V n + l ,  3 

between Stiefel manifolds involves the complex s t ructure  on R n = C a. 

According to Paechter ' s  tables (cf. [P], p. 249) 7rn-l(Vn+l,3) is isomorphic to 

Z4 and Z2 • Z2 if n = 0(4) and n -= 2(4), respectively. Under  the inclusion 

i: B C N this corresponds to the group built  up f rom the Z2- terms in the 

singulari ty sequence 

~ 2 ( N ;  7/) @ 911(N)Z2~Z2 ; f l l ( P ( a ) ;  ¢) ---+ ~ I ( N ;  ~/) @ Z2 -~ O. 

If  aj2 ~ 0 or n = 2(4), then  the global obst ruct ion w(~,/3) = i , j , (Cq) contains 

precisely as much informat ion as its image in the Z2- term to the right,  i.e., 

wn(/3 - a ) [N] .  However, if n = 0(4) and aj2 = 0 (i.e., w l ( N )  = 0 and w2(7/) = 0 

on H2(N;  Z)),  then  

i , :  = z 4  ¢) 

maps  the mod  4 class of Ca injectively to w(a,/3),  l 
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Finally, let us apply  the results of this section to the s i tuat ion in Example  G 

of the introduction:  a = a ~ @ • and ~ = / ~ '  @ • where a '  a n d / ~  are the complex 

bundles AB and GAps over N = C P ( q ) , q  > 2. As in (5.3) put  z = cl(A1) and 

z2 = w2(A1). Then  we have 

w~(~/) = (p + Epi + q + 1)z2 and 

Cq(/~ ! -- Of) = Cq(~ t ~C S t) = H (Pi -- P) zq" 

First  assume tha t  Pi -- p(2) for some i, say i = 1, or, equivalently, tha t  

w , ( f l  - ~)  = [ I ( p ,  - p)z~ 

vanishes. Then  so does w(a,/~) except  when Pl - P ~ 2(4),p2 = - . -  -= pq ~ 0(2) 

and p - q - 0(2) (see Proposi t ion  5.16). But  this except ional  case gets excluded 

anyway if we require the (n - 2)-dimensional  par t  of 

w(/~ - a )  =(1  + pz2) - 1 .  H ( 1  + piz2) 

=(1  + P2Z2) . . .  (1 + pqZ2) 

to be trivial.  Thus  w ( a , ~ )  and ~(5, /~)  - -  or, equivalently, w , ~ ( f l -  a )  and 

w._2(/3 - a )  - -  vanish precisely if Pi - p(2) and pj  - 0(2) for some i # j .  

By Theo rem 5.10 this necessary condit ion is also fully sufficient for the exis- 

tence of an an t ipodal  m o n o m o r p h i s m  except when w2(r]) # 0, and hence the 

par i ty  of ~ = ½ P D  ( e ( u ( a ) ± ) )  defines the ex t ra  obst ruct ion ~ (cf. (5.14)). For 

example ,  if p l  = p and P2 -- 0(2) but  w2(y) # 0, then we may  choose u so tha t  

u ( a ) "  = Ap2 @ . . .  G Apq; thus in this special case ~ = 0 precisely if 

Cq--l(?Z(O0 A-) = P 2 ' '  "Pq zq-1  

is divisible by 4. 

The  classification s t a tement  in Example  G follows from Proposi t ion  5.8. 

§6. Nonstable and stable tangent plane fields on complex projective 
spaces 

In  this section we will prove the s t a t ements  which were listed in Example  H of 

the introduct ion.  

Let  p and q be integers, q > 1. As before, Ap will denote  the p-fold (complex) 

tensor power of the canonical complex line bundle over N '~ = CP(q ) ,  z := Cl(A1) 

and z2 := w2(A1). 
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A complex monomorphism from A v to T N  exists precisely if the homomorphism 

bundle 

Homc(Ap, TN)  '~ A_p ® (~-1 ~ " ~ )  

(cf. (5.2)) has a nowhere vanishing section or, equivalently, a trivial Euler or top 

Chern class c a. The total Chern class equals 

c(nom(Ap, TN))  --c(A_p ® A-1 ® C q+l - -  /~--p) 

= ( ( 1  - p z )  - z ) q + l ( 1  - pz) -1 

=Eq (q i+~)  
i=0 

Its top component 

(6.1) cq = i + 1 p " ( -z )q  
i=0 

vanishes precisely if p ~ 0 and 

P" i + 1 p = (1 + p ) q + l  _ 1 = 0, 
i=0 

i.e., if p = - 2  and q odd. This proves the existence claim in Example H, (i), 

whenever q _> 1. 

A similar but simpler mod 2 calculation shows that 

(6.2) w,~(TN - Ap) = 0 

if and only if p _= 0(2) and q _= 1(2). This necessary condition for the existence 

of a real monomorphism Ap ~ T N  (nonstable or not) implies also that  

W2((~C) ~--- W2( A--p (~C T N  - T N )  = pqz2 = 0 

and 

W2(¢) = (q -- 1)x 2 +pz2 = 0 

(cf. (5.1)). Hence for q >_ 2 it follows from [K 4], 4.3, that a (nonstable) real 

monomorphism from AB to T N  exists precisely if p is even and 

:t:cq(Hom(Av, TN) ) [N  ] - q  + 1  + (q 2 + l ) p  _- 0(2p) 
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(compare (6.1)); for q = 4r - 1 (and q = 4r + 1, resp.) this just means that  

q +  1 =  _ ( q  + 1) 2 p = - 2 r ( 4 r  - 1)p - 0 (2p) 

(and q + 1 --- - ( 2 r  + 1)(4r + 1)p (2p), resp.). This proves the existence claim in 

Example H, (ii). 

In view of the observation (6.2) the remaining existelice claims in (iii) and (iv) 

now follow from Proposition 5.16 and Theorem 5.10 and from the fact that  for 

even p 

vn-2(Ap @ R, TCP(q) E3 R) = wn-2(CP(q)) = (q + 1) q - 1  
~ 2 Z2 " 

Finally, recall (from [K 4], 1.5 and 4.6) that complex monomorphisms Ap 

TN - - i f  they exist and if q >__ 2- -  correspond to the elements of ~ I (N;  ¢c) ~ Z2; 

moreover, the transition homomorphism 62 to ~2(P(a) ;  ¢) is injective and has 

cokernel Z2. This completes the proof of the statements (i) and (ii) in Example 

H. In addition, we conclude that if two complex monomorphisms are regularly 

homotopic in the real sense then they allow also a complex regular homotopy. 

The remaining enumeration statements in Example H follow from Theorem D, 

(5.4), Proposition 5.8 and (1.4). | 

Example 6.3: Given q > 1, q odd, a real monomorphism from Ap to TCP(q) 
exists at least if p = +2. Here is a complete list of all other such p for a few low 

values of q. 

q 1 o r 3  5 o r l l  7 9 o r 1 9  13 or 27 15 17 or 35 

p - -  + 6  + 4  4- 10 4- 14 + 4 o r 4 - 8  4 - 6 o r 4 -  18 
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