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ABSTRACT

In this paper we study existence and classification questions concerning
antipodal vector bundle monomorphisms u (i.e., u is regularly homotopic
to its negative —u). In a metastable dimension range the singularity ap-
proach yields complete obstructions which, however, have to be weakened
usually in order to become computable. In many situations we determine
the resulting “weak, stable” invariants completely; a central role here is
played by the antipodality obstruction v;(c, 8), a curious combination of
Stiefel-Whitney classes. Moreover, in some sample cases we describe pre-
cisely how much information gets lost by the transition to these weaker
invariants. This involves, e.g., identifying some classical second order ob-
structions. As an application we exhibit a setting where the difference
invariant d(u, —u) distinguishes all (and in fact, infinitely many) regular
homotopy classes. Also, we give complete existence and enumeration re-
sults for nonstable and stable tangent plane fields on complex projective
spaces in terms of explicit numerical conditions.

I. Introduction and statement of results

Let o® and S denote real vector bundles of the indicated dimensions a < b over
a connected closed smooth n-dimensional manifold N.
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Definition: A vector bundle monomorphism u: o < g (i.e., an injective
continuous vector bundle homomorphism over the identity map idy) is called

antipodal if 4 and —u are regularly homotopic (i.e., homotopic through vector
bundle monomorphisms).

In this paper we are concerned at first with the existence problem of such
antipodal monomorphisms. This amounts to the following two partial questions
which we will attack by the singularity method (cf. [K 1]).

Question A: Is there any monomorphism u: o — /7

If yes, it restricts to an injective linear map on every line in any of the fibers
g, € N. In other words, if u exists then there is also a monomorphism from
the canonical line bundle A over the projectification P(a) of « into the puliback of
B; equivalently, the vector bundle Hom(\, 8) = A® S over P(a) allows a nowhere
vanishing section s,,.

Now, given any generic section s of A ® 8 we obtain the following singularity
data:

(i) the (n 4+ a — 1 — b)-dimensional manifold Z := s~{0} formed by the zero

set of s;
(i) the continuous map ¢g: Z C P(a); and
(iii) the stable vector bundle isomorphism

(I.1) G:TZ®g"(AQBOR)=g"(A®a®TN)

(which is deduced from the obvious identification of A ® 8 | Z with the
normal bundle of Z in P(a)). The resulting normal bordism class

(1.2) w(a,B) =(2,9,9] € Qnya—b-1(P(a); §)
(with coefficients in the virtual vector bundle
(L.3) $:=A0p-A®a-TN

over P(a)) is an obstruction to the existence of nowhere vanishing sections
in A ® B and hence of monomorphisms from o to 3. Actually, in a certain
“metastable” dimension range it fully answers our first question.

THEOREM A (cf. [K 1], 2.15 and 3.7): Assume n < 2(b — a). Then a mono-
morphism u: a < 3 exists if and only if w(a, f) = 0.
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Question B: Given a monomorphism u: & — £, when is it regularly homotopic
to its negative —u?

In this situation the singularity approach outlined above yields the difference
obstruction

(L) d(u, ~u) € Qna—b(P(e); ¢)
which again settles our question in a suitable dimension range.

THEOREM B (cf. [K 1], 4.14): Assume n+1 < 2(b—a). Then a monomorphism
w: a = 3 is antipodal if and only if d(u, —u) = 0.

Actually, in these dimensions monomorphisms u — if they exist — are com-
pletely classified by the difference obstruction d(uo, u) where ug is fixed. But this
is an external invariant based on the comparison with some other, arbitrarily se-
lected monomorphism ug. It would be desirable to distinguish monomorphisms
u by their internal geometry, e.g., by the properties of the complement of u(«)
in B or by the antipodality obstruction. In particular, we will be interested in
the question how many different regular homotopy classes the internal invariant
d(u, —u) can detect.

We can bring together most of the existence and classification aspects of the
obstructions discussed above into one unifying setting. Let £ denote the nontrivial
line bundle over the circle S'.

Question C: When is there a monomorphism
t:a:=ERa—f
over N := S' x N? (We drop obvious pullbacks from the notation.)

Note that the a-plane bundle & over S! x N can be interpreted as the mapping
torus of the antipodal isomorphism —id, over idy. Thus the required mono-
morphism % consists basically of a monomorphism u: a < 8 over N, together

with a regular homotopy from u to u o (—id,) = —u. As before the singularity
method yields the obstruction
(L5) (& B) € Qnya—s(P(@); )

in the normal bordism of P(&) with coefficients in the virtual vector bundle
(1.6) $:=A®B-A®&—TN

(where X denotes the canonical line bundle over P(a)).
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THEOREM C: An antipodal monomorphism u : o« < 3 over N exists if and only
if there is (any) monomorphism u: & < 3 over S* x N. In the dimension range
n+ 1< 2(b— a) this holds if and only if w(a, 8) = 0.

It is the purpose of this paper to investigate and exploit the three obstructions
w(a. B).d(u, —u) and w(a,3) (occurring in Theorems A, B, and C) and their
relations among each other and with classical invariants. A central tool is the
following commuting diagram (which will be established and discussed in sections
1 and 4: see also (1.12) and (I.13) below).

(g 1) : :
SE y (L7)
G (Pla) ) — 0. (P> x N: ¢)
orgy
Y
du. —u) o d(1. —u) a.
& .
_ Ni(N) if @ Z b (mod 2):
: : —_— (P> ~ ¢
v Q(P(a): ¢) P @ (P> x N:¢) {QA.(N: 1) R s (V) elso
w(&.ﬁ) incl, D(FY.,H) incl,
g P(&): & ﬁipx % N (J;) ~ mk(ﬁ) if @ Z b (mod 2}
H(Ple): ¢) forg, g A ﬁ,\.(ﬁ; 1) @Wk-l(ﬁ) else
wle, 8) |* w(a, B) #
¢ e .
. I o 0 e e(N) ifa#b (mod 2);
Q1 {Pla); o) r— Q1 (P >i N;¢) = {ﬁk—l(N§ 1) & Ne_o(N) clse
Diacram (1.7)
Here N := S! x N. Both vertical long exact sequences involve Gysin
isomorphisms (cf. §1). For k = n + a — b our obstructions fit in as indicated:
(18) M (w(a7 B)) = w(av ﬁ)y

moreover, if a monomorphism u: o < 3 exists and hence w(w, 8) = 0, then
(1.9) incl, (d(u, —u)) = w(e, B);

finally, for any two monomorphisms ug, u: @ — 3 we have

(1.10) +0.{d(up, u)) = d(u, —u) — d{up, —ug)

(= d(u, —u) if up happens to be antipodal).
Thus diagram (I.7) is also very relevant for the classification problem.
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Question D: How many different antipodal monomorphisms u: a < 3 exist?
What is their percentage among all monomorphisms?

Clearly, if (us: @ = f)scr is any regular homotopy of monomorphisms and if
Uy is antipodal, then so is u,; for every ¢ € I. In particular, classifying antipodal
monomorphisms up to standard regular homotopy amounts to classifying them
up to deformations through antipodal monomorphisms.

THEOREM D: (i) If n < 2(b— a) then

{d(u, —u) € D ya_p(P(), d) | u: o = B} = incl; Hw(@, B));

ifeven n+1 < 2(b— a) and if O, 4_p is injective, then the antipodality obstruc-
tion d(u,—u) classifies all monomorphisms u: « — f3 completely up to regular
homotopy.

(ii) Assume that n+ 1 < 2(b — a) and that an antipodal monomorphism ug
exists. Then the difference invariant d(ug,—) establishes a bijective correspon-
dence between all regular homotopy classes of antipodal monomorphisms and the
elements of ker Oy, 44 _5-

In particular, all monomorphisms from « to B are antipodal if and only if
Onta—b = 0 (or, equivalently, incl,,,,_p is injective).

In general, the smaller ker(incl.) = 0. (Qn4a-b(P(@); ¢)) the bigger the relative
size of ker 0,1, and hence the percentage of antipodal among all monomor-
phisms. The two extreme opposites spelled out in Theorem D can actually occur.
The case 3, = 0 is discussed in detail in [KMS]; actually, in view of the identity
(1.3) below, it can also be described by some kind of “antipodality condition
on the bordism level”. On the other hand, in Examples G and H and in sec-
tion 5 below we will encounter various concrete situations where 0, has a very
small kernel; in particular, we will exhibit a setting where d(u, —u) is a complete
internal invariant which distinguishes all (and, in fact, infinitely many) regular
homotopy classes of monomorphisms.

Finiteness questions arising in this context are settled quite generally by the
following result which will be proved in §2.

COROLLARY: (i) Assume that w(a,8) = 0 and n < 2(b — a). Then the in-
variant d(u, —u) distinguishes infinitely many regular homotopy classes of mono-
morphisms u: a — 3 if and only if @ and b are odd and H, 4,_s(N; @n) # 0.

(i) Assume that w(a, ) = 0 and n+ 1 < 2(b — a). Then there are infinitely
many regular homotopy classes of antipodal monomorphisms if and only if b is
even and one of the following two conditions hold:
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1) a is odd and Hn—b+1(N;@a—TN) # 0; or:
2) a is even and ker T9+a_b & coker Tg+a_b+1 #0
(where—up to isomorphisms—

1.11) 72 H;(N;Q,) — Hi_o(N; Qs_rn)

denotes the homomorphism which occurs in the Gysin sequence of ).

Here and later, given a virtual vector bundle v over a suitable space X, the
twisted rational (or integer, resp.) coefficient system corresponding to the orien-
tation line bundle &, of 7y (i.e., w1(&y) = w1(7)) is denoted by @7 (or i.,, resp.).
Moreover, we put for short

(L12) n:==B-a-TNe€KO(N) and 7:=8—a—TN e KO(N).

Our singularity obstructions and the normal bordism groups in which they lie
are strong but usually hard to compute. Therefore it is meaningful to also study
weakened versions which are more accessible. For example, we may replace stable
vector bundle isomorphisms such as g in (I.1) by the corresponding isomorphisms
£z = g*(&;) of orientation line bundles; similarly, we may forget that the canon-
ical line bundle A over P(a) lies in the pullback of & and retain it only as an
abstract line bundle with classifying map into infinite projective space P°°. This
procedure defines the forgetful homomorphisms forg, and f:);g,* in the diagram
(I.7) above as well as their target groups. For example, if ¢ is orientable, we are
just dealing with the usual oriented bordism groups of P x N. But in any case
the resulting “twisted” oriented bordism groups can be entirely described —as
indicated in (I.7)—— by unoriented and twisted oriented bordism groups of N and
N (see [K 3], 1.3).

Often this allows us to evaluate the “weak stable versions”

d(u, —u) = forg,, , o_p(d(u, —u)),
(L13) (&, B) i=forgp1a-b(w(@ B)), and
w(aa .B) = forgn+a—b—1 (w(a’ ﬂ))

of our three obstructions (compare (1.7)).
For this purpose we introduce the following combination of (dual) Stiefel-
Whitney classes of 8 (and a):

(14) vl B) =) (a+j)wj(@)wi—;(8) € H(N;Zs), i€
j=0
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(Since this sum involves only every other summand of w;(8 — a) =
Tw(a)w;—j(6), we may, in a way, interpret v;(a,8) as being “one half of
wi(B — a)”. The relevance of both classes stems from the fact that they oc-
cur as components of w(8 — &) € H*(S! x N;Zs), cf. formula 3.5 below.)

If a = b(2) (and a < b), consider also the classical primary obstructions (in the
sense of [S], 35.3)

(L15) &(a,B) € H* 1 (N;Zp_o) and &@,pB) € H**1(S* x N;Zy_3)

to sectioning the obvious bundles UMono(ay, 8;) and UMonoz (a3, 8;), ie., to
finding monomorphisms u: @ «— 8 and u: & — B3, respectively. Similarly, if u
exists, let

(L.16) c(u, —u) € H" YN x (I,81); Zg_,)

be the primary obstruction to deforming » through monomorphisms into —u.

The following table lists necessary conditions (to the right) for the vanishing of
the weak stable versions of our three obstructions (as indicated to the left hand
side).

TABLE L17 | if a % b(2) if a = b(2) (and a < b)
d(u,—u) =0 | v;(a, 8) =0 vi(a,B)=0for i > b—a and
fori>b—a t(u,—u)=0
vi—i(a, B) = 0 = w;(B8 — e) for
w(a,B)=0|v;_1(a,8) =0 and i>b—a+1and¢a,B) =0and

wi(B—a)=0fort>b—a | vp-o(e,8) =0 | &&B) =0
ifa=b#£0(2) | ifa=b=0(2)
We,B)=0|w(B-a)=0 wi(f—a)=0fori>b—a+1
fori>b—a and ¢, 8) =0

THEOREM E: We have 2 - &(w, ) = 0, 2-@(&,8) = 0 (and 2 - d(u, —u) = 0 in
case a or b is even).
Furthermore, if
(i) a £ b(2); or
(i) n+a—-b< 4;0r
(ili) w1(N)+w1(a)+w1(B) = 0 and the torsion of H.(N;Z) consists of elements
of order 2;
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then the necessary conditions listed in the table above are also sufficient.
This and the following result will be proved in section 4 below.

PROPOSITION F: Ifa orb is even, then the homomorphism incl, (cf. 1.7) is split
injective. Hence d(u,—u) is independent of u: o — B (in fact, incl,(d(u, —u))
coincides with a component of W(&, ) which is well-defined even if no mono-
morphism u exists).

As this whole discussion shows, the forgetful homomorphisms forg; and t%\r/gk
in diagram (1.7) describe essentially the transition from our sharp obstructions
w(a, B), w(®,8) and d(u, —u) to classical (first order) obstructions. Thus the
more subtle aspects (often of higher order) are mainly concentrated in the kernels
of forg, and fo/\r/gk. Fortunately, we have some control over these kernels. For
example, they are always finite if b is odd or if £k + 1 < a (for precise criteria
see Proposition 2.10 below). More importantly, for low ¥k = n—-b+a < a
our forgetful homomorphisms often fit into exact sequences which allow explicit
calculations (see [K 3], theorem 3.1, and especially [K 1], theorem 9.3 and the
“toolkit” assembled there).

As an illustration of the potential power of all these techniques we discuss
the case a = 3,b = n + 1 in some detail in §5. Exploiting the deep interplay
of existence and classification aspects which pervades the whole theory and has
a focus, e.g., in the first order obstructions v;{c, B) we can compute also two
subtle second order obstructions in the proof of Theorem 5.10. This leads to
a precise vanishing criterion for w(@, 3) and allows us in interesting cases to
deduce complete existence and enumeration results in terms of explicit numerical
conditions.

Example G: Given integers ¢ > 2, p and p1,. .., pq, consider the vector bundles
3 _ n+1
a*=X®R and BT =X, ©...0 A, OR

over complex projective space N™ = CP(q) (where A\; denotes the k-fold complex
tensor power of the canonical complex line bundle).

Then there exists a monomorphism u: @ < 3 {antipodal or not) precisely if
[1(p: — p) is divisible by 4 in the case p+ Ep; # ¢ = 0(2) and [[(p; — p) is even
otherwise. If this is satisfied the invariant d(u, —u) distinguishes infinitely many
monomorphisms in a 1 : 1 (or 2 : 1) fashion according as ¥p; = (p + 1)g (2) (or
not, resp.).

An antipodal monomorphism exists precisely if p; — p and p; are even for some
1 < i # j < q and—in addition in the case p + Xp; = ¢ (2) —the Euler class
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e(u(a)t) € H*2(N;Z) of the cokernel bundle of any monomorphism u: o < 8
is divisible by 4. 1

This is shown at the end of §5. As another illustration we establish (in §6) com-
plete numerical criteria for nonstable and stable tangent plane fields on CP(q).

Example H: Given ¢ > 2 and p € Z, let A, again denote the p-fold tensor power
of the canonical complex line bundle over complex projective space N = CP(q).
Then:

(1) There exists a complez vector bundle monomorphism from A, to the tangent
bundle TCP(q) if and only if p = —2 and ¢ is odd (and then the number of
complex regular homotopy classes is 2).

(ii) There exists a real vector bundle monomorphism from A, to TCP(q) if
and only if p is even, ¢ is odd and ¢+ 1 is an even (or odd, resp.) multiple of p
according as ¢ = 3(4) (or ¢ = 1(4), resp.), and then the number of real regular
homotopy classes is 4.

(iii) There exists a monomorphism u from A, @ R to TCP(g) ® R if and only

if p is even and ¢ is odd. When this holds, the antipodality obstruction d{u, —u)
distinguishes infinitely many different such monomorphisms u, and precisely two
regular homotopy classes [u], [u'] can have the same value d(u, —u) = d(v/, —u').

(iv) There exists an antipodel monomorphism from A, @ R to TCP(q) ® R if

and only if p is even and ¢ = 3(4), and then their number is 2 (up to regular
homotopy).

This yields many concrete situations where real monomorphisms but no antipo-
dal (or complex) monomorphisms exist. Also, observe the effect of stabilization:
there are infinitely many nonantipodal monomorphisms in (iii) even though all
monomorphisms in (i) and (ii) are antipodal due to the complex structures.

Remark 1.18: The existence criteria in Example H still hold in the case ¢ = 1.
However, the resulting vector bundle isomorphisms over CP(1) = S? are uniquely
determined up to isotopy (and - - in (iii) — the obvious reflection).

The results and techniques of this paper can also be applied to obtain a com-
plete homotopy classification of line fields or, equivalently, of Lorentz metrics,
e.g., on all closed manifolds of dimension n = 0(4). Details will be given in [K 5].

NOTATIONS AND CONVENTIONS.  All (co-)homology has coeflicients in Z, unless
specified differently; e.g., z = w1 () € HY(P*¥),k > 1, and y € H'(S') denote
the generators where A is the canonical line bundle over real projective space P¥.
Over any base space R denotes the trivial k-plane bundle. For any vector bundle
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v the multiplicative inverse of its (total) Stiefel-Whitney class w(v) is denoted
by W(y); e.g., for any virtual vector bundle vy — § we have w(y — §) = w(y)w(9).
Pullbacks (e.g., of vector bundles or cohomology classes) are often not written.
In order to simplify our notation we omit also the superscript st which was used
in [K 3] (e.g., by defining @**(a, B) = forg(w(c, B))) to indicate that forg has also
a stabilizing aspect.

§1. The main diagram and the strong invariants

In this section we establish basic facts about the diagram (1.7) and use it to clarify
the relations between our (“strong”) normal bordism invariants. In particular,
we prove formulas (1.8), (1.9), (1.10) and Theorem D.

As in Question C consider the nontrivial line bundle £ over S! and the a-plane
bundle & = £ ® @ over N = S! x N together with its projectification P{a) (ie.,
the manifold consisting of all lines through 0 in any of the fibers a,,z € N ).
Since &, P(a) and ) are the mapping tori of —ida,idp(e) and ~idy, resp., we
have the natural identifications

(1.1) A=——=E0 A\
RN
P(&) =— §' x P(a)

(A and X denote the canonical line bundles over P(a) and P(&), resp.; here and
in the remainder of this paper we drop obvious pullbacks from the notation).
Thus we conclude

(1.2) P=E(®ARB-A®@a—TN

(compare (1.6)); intuitively speaking, ¢ is “twisted around S*” via the antipodal
map —idg on .

Now consider the exact normal bordism sequence of the pair (S, S'—+) x P(a)
and use the “Gysin”isomorphism

th: Qi1 (ST x P(a), (S — ) x P(a); §)—Qu(P(a); ¢)

defined by taking transverse intersections with the submanifold {*} x P(a) (cf.
[D], chapitre I, 3.1, 3.3 and §6). We obtain the vertical exact sequence on the
left hand side in diagram (1.7) (and, by analogy, also the one to the right hand
side). Inspecting the inverses of the isomorphisms M and i, (where i : P(a) C
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(S — %) x P(a) is an obvious inclusion) we see that the boundary endomorphism
takes the form

(1.3) 8, = £((~idg). — id)

on Q,(P(a);$) (compare (1.2)); here (—idg). composes vector bundle isomor-
phisms g (as in (I.1)) with the antipodal map on 8.

When we intersect P(a) = {*} x P(a) in S* x P(a) with the zero set of a
suitable section 5 in A ® B we get the zero set of the restricted section § | P(a)
in A® 4. This implies formula {I.8) in the introduction.

Similarly, given any monomorphism u: & < 8 over N and its induced section
Sy in the vector bundle A ® § over P(a), a (singular) homotopy from s, to —s,
has the same zero set as the resulting section in the mapping torus of —idygg.
Formula (1.9) follows easily.

Moreover, for any monomorphisms ug, u: o <— 3 we have

d(—uo, —u) = (= idg). (d(uo, u))
and therefore (by (1.3))

d(u, —u) = d(u, uo) + d(ug, —uo) + d(—ug, —u)
= d('u,o, —U()) + 6* (d(’ll,o, u))

This establishes formula (1.10).

Next we prove Theorem D of the introduction. If n < 2(b ~ @) and ¢ €
incl, ! (w(@, B)), then there exists a monomorphism ug: & <= 5 and every element
of Qpya—s(P(a);¢) can still be realized as the difference invariant d(ug,u) for
some further monomorphism u; this follows as in the proof of theorem 4.8 in [K
1]. In particular, the element

(1.4)

¢ — d(ug, —ug) € ker(incly) = 8u (b (P(a); P))
can be written as £, (d(up, u)). Thus, by (1.10),
¢ = d(ug, —ug) £ i (d{up, u)) = d(u, —u)

as claimed.

Now assume even that n+ 1 < 2(b+ a). Then the difference invariant d(ug, u)
classifies monomorphisms u (cf. [K 1], 4.14) and so does d(u, —u) by (1.10) if 9, is
injective. If ug is antipodal, all other antipodal monomorphisms are characterized
by

d(u, —u) = £0,(d(uo,u)) =0
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as claimed. [ |

Finally, we give another interpretation of the antipodality obstruction d(u, —u).
Any monomorphism u: & <  over N induces a monomorphism from the canoni-
cal line bundle X over P(a) into (the pullback of) 3 and hence a nowhere vanishing
section s, of A® 8. We obtain a decomposition A® 3 = R® (Rs, )+ into the span

of s, and its (b—1)-dimensional complement over P(c). Consider the obstruction

w(R, (Rsu)t) € Qnsa—s (P(@); (Rsy) — TP(a) = ¢)

~

to a section without zeroes in this complement (compare (I.2) and (1.3)).

ProprosITION 1.5: For any monomorphism u: a < 3 over N we have
d(u, —u) = +w(R, (Rs,)L).

Proof: Given a generic section s of (Rs, )+ over P(a), define a section S of A® 8
over P(a) x I by

S(z,t) = cos(mt)sy(z) + sin(nt)s(z).
This is a generic homotopy from s, to —s,, = s_. Its singularity data (at ¢ = )
coincide with those of s. |

$2. Rational normal bordism theory

In this section we prove the corollary to Theorem D of the introduction as well as
finiteness criteria for the kernel of forg,, (cf. (I.7)). We achieve this by tensorizing
the relevant normal bordism groups with the field Q of rational numbers.

Let X be a CW-complex all of whose skeletons are compact and let ¢ =
%y — 1_ be a virtual vector bundle over X. Recall that the rational Hurewicz
homomorphism

(2.1) pd: Qu(X;9) © Q- Hy(X;Qy)

is bijective for all 7 € Z (see [D], proposition 5.2). Here @¢ denotes the rational
coefficient system which is twisted like the orientation line bundle &, of ¢ (i.e.,

wy(€y) = w1(9)).

LeEMMA 2.2: Let 9 = « -+ 1)y be the sum of a c-dimensional vector bundle v
and a virtual vector bundle vy. Then the involution (—id,)s on Q. (X;9)QQ
(induced by the antipodal map on vy, compare (1.3)) equals (~1)°- identity.

Proof: In the rational setting the involution depends only on its effect on orien-
tations (by (2.1)). |
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In particular, consider the boundary endomorphism 0; on Qi (P(a);¢) (cf.
(1.7} and (1.3)); when tensored with the identity map on @Q, it takes the form

0}? = 4((~idg). —id) ® idg = +((—1)* — 1) - identity.

PROPOSITION 2.3: (i) The image of Jy is infinite if and only if b is odd and
Qu(P(a); $) @ Q # 0.

(ii) The kernel of 8y, is infinite if and only if b is even and Qg (P(c; ¢) @ Q # 0.
(This is also equivalent to coker &y being infinite.)

Proof:  The group Qp(P(a); ¢) is finitely generated since it equals a stable
homotopy group of a (finite) Thom complex. Thus tensoring with Q preserves
exactness. We obtain the commuting diagram

0 — (kerd) ® Q —— % (P(a);9) @ Q (imdk) ®Q — 0

)
(—1)°-1); 1

Q(P(a); d) @

with exact horizontal sequence. Now, im d, is infinite precisely if (imd;)@Q # 0
or, equivalently, ((—1)® — 1) Qg (P(a); ¢) ®Q # 0. Claim (i) follows, and so does
claim (ii) by similar arguments. |

It remains to decide when Qi (P(a); ¢) ® Q is nontrivial. For this we may use
the rational Hurewicz isomorphism (2.1) and standard arguments from homology
theory with twisted coefficients. But it is more in keeping with our geometric

approach to consider (the rational analoga of) the exact Gysin sequences
(2.4)

sty

+ ZHQH(P® x N;§) 505 _o(P® x N;A® B — TN) = Q;_1(P(a);$) = ---

and, for any virtual coefficient bundle v,
(2.5)

c o (P X N3 ) 250, 1 (P® x N3+ A) = Q-1 (S x N3 7 () = -+

(compare [D], 1.6 or, e.g., [K 3], 2.1). Here 7; and A, are defined by taking zero
sets of generic sections s in (the pullback of) A ® o and A, respectively. Since
we may use the section —s instead, we have, e.g., that 7; = (—idxga )« © 7; and
hence, by Lemma 2.2,
(2.6)

T;Q =7 Qidg = (—l)aT;Q;
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thus 72 = 0 if a is odd.

For the same reason (and since S ~ %), A; ® idg is always trivial and the
rational version of the long sequence (2.5) splits into the short exact sequences
0= Q(P™ x N;gp+ ) ® Q > Q(N;9|N) ® Q 225 Q;(P® x N;¢) @Q ~ 0.

\ rd
proj,
Now decompose
(2.7) wi(¥) = cwy(A) +d € HY(P® x N;Z3) = Zo ® H'(N; Zy).

If ¢ = 0, ie., if the orientation bundle of ¥ (and hence Q;(P* x N;9) ® Q)
does not involve A (compare (2.1)), then the rational homomorphism incl,
above is bijective; indeed, the projection to N induces an inverse. Moreover,
Q;(P* x N394+ A) ® Q = 0 in this case. We obtain

LeMMmaA 2.8:

- o J Q(N;YIN) © Q= Ho(N; Qyv) ifc=0;
Q.(P xN,¢)®Q—{O . ifc#0in (2.7).

This, together with (2.4), implies

LEMMA 2.9:
Q;(N;n) ® Q= Hy(N;Q,) ifa=b#0(2);
Q;(P(a); ¢) ® Q OHj-a+1(N 1 Q1) ifa i b ; 38
ker 7'? @ coker Tg_l ifa=b=0(2).

Proof: If a #Z 0(2), then 7% = 0 and the rational version of 2.4 shows that
Q;(P(a); $) ® Q is isomorphic to

Qj_a+1(P°° XN;A@,B—TN)@Q@QJ'(POO XN;¢)®Q;

but by Lemma 2.8 one of these summands vanishes while (in view of (2.1)) the
other summand can be expressed as indicated.

If a is even, the claims made above follow again from our rational sequence;
in particular, if also b # 0(2) two of our three groups vanish by Lemma 2.8 and
therefore so does the third. |

The corollary to Theorem D in the introduction follows now directly from
Theorems A, B and D as well as from the results (2.1), Proposition 2.3 and
Lemmas 2.8 and 2.9 discussed above.

With nearly no extra work, the methods of this section lead also to a better
understanding of the transition from “strong” to “weak, stable” invariants.
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PROPOSITION 2.10: Given any j € Z, the forgetful homomorphism
forg, : Q;(Pla);¢) — ﬁj(P“’ x N; &)

has an infinite kernel if and only if b is even and H;_q41(N; @g_TN) # 0 (and,
in case a is also even, T;Q_{_l is not onto, cf. (1.11)).

An analoguous result holds for fof\r/g]- (and @, ¢ and N ).

Proof: forg, is the composite of the “stabilizing” (or “inclusion”) map st; (cf.
2.4) and the homomorphism ?j which retains only orientation information. Now

the rational Hurewicz isomorphism ;[]Q (cf. 2.1) factors through f? = 7]- ®idg and

S0 7? is injective. Therefore, forg; has infinite kernel if and only if ker(st;®idg) #
0. Our claim follows again from the rational version of the sequence (2.4). |

§3. The antipodality obstructions v;(«, )

In this section we want to get some hold on the “weak, stable” obstructions
forg*(w(a,,@)),i%\r/g*(w(&, B)) and forg, (d(u, —u)) (cf. (I1.7) and (1.13)). For this
purpose we calculate the values of their images under the mod 2 Hurewicz homo-
morphisms

p2 : Q2 (P® x N;¢) — H,(P™ x N) and

(3.1) NS -
p2 Q0 (P™ x N;¢) — H,(P* x N).

We encounter —besides standard Stiefel-Whitney obstructions— also the highly
interesting antipodality obstructions v;(a, 8) € H*(N) defined in (I1.14).

THEOREM 3.2:
() po(@(e,B)) =0 if and only if w(f—a)=0fori>b—q;
(if) pa(@(a, B)) = 0 iff both wi(8 — «) and v;_1(«, B) vanish for all i > b — a;
(iii) when a monomorphism u : o — 3 exists, the antipodality obstruction
po(d(u, —u)) is independent of u and vanishes precisely if v;(a, 8) = 0 for
1> b—a.

Proof: Let x € H(P*) and y = w;(£) € H'(S') denote the canonical genera-
tors.

For the first claim represent w(a, 3) by the zero set data (Z C P(w),3) as in
(I.1) Also pick a complementary vector bundle at over N such that a @ ot =
RE x N for some L >> 0. The projection onto this summand defines a generic
section of Hom(A, at) 2 A ® at over PL~! x N with zero set P(a). Thus Z
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occurs as the zero set of a generic section of the (b+ L — a)-dimensional vector
bundle A ® (8 ® at) over PL=1 x N.

Now, given j > 0 and ¢ € H*t2~%3-1(N), we calculate by standard tech-
niques (see, in particular, formulas (0.18) in [K 3] and (9.9) in [K 1])

o c(p2(@(a, B))) = (27c | Z)[2Z)
=zlewy 0y 1(A® (B® ah))[PF7! x N]
(3-3) = Zx”jcwb_“,;_i(ﬁ ® a™)[PE x N]
>0

= Cwb_.a+j+1(ﬁ - a)[N]

Clearly, ps(w(a, 8)) = 0 precisely if all these characteristic numbers vanish, i.e.,
if wp—q4j+1(8 — @) =0 for j > 0. This proves our first claim.
Similarly, we conclude that pg(@(a, 8)) is trivial if and only if w,(8 —a) =0
for all + > b — a. Thus let us compute these Stiefel-Whitney classes.
According to the splitting principle (cf. [H], 4.4.3) we can calculate the total
class
w(a) = w(é ® a) € H*(S* x N)

and its inverse as if a were a direct sum of line bundles. Thus formally we can

write
a

w(a) = H(l +2), w(a)= H(l +z+y)

i=1
and therefore (since y? = 0)

a
w(a)EH(l‘in-l-y—}-z?+(zi+y)zi2+z;1+...
=1

:f[(;)zf"[(wzi)w])

:il;[llJrz, [(i{llJrzz)wLy(; 14 z1)(T+2) (1+Za))]
> zjl.....z,-k)

=1 0 1< <ga<--<r <asally #i
=w(a) + yw(a)? - Y (a -
k=0

here a summand zj, ...z; gets counted once for every i ¢ {ji,...Jjx}, i.e
altogether a — k times.

=w(a) + yw(a)?

fi“

=]
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We obtain for j € Z

(3.4 w;(a) =w;(a +wal (a—j+2i4+ Dwj_2i—1(a)

=w;(a) + (a + 37— Dyw;_1(0)
and finally for all natural numbers ¢
wi(B— &) =Y (W;(a) + (a+j — )yw;—1(a))wi—; ()
(3.5) j
=w;(f — @) +y - vi_1(a, f)
(compare (1.14)). This proves the second claim in Theorem 2.2 and explains why

the v-invariants play such a central role.
Claim (iii) now follows easily from the injectivity of the homomorphism

incl, : Hy(P® x N) — H,(P® x S* x N),

from its compatibility with ps o fo’\r/g* and from relation (1.9). Indeed, if u exists,
then pg o forg, (d(u, —u)) = 0 precisely if for i > b — a the Stiefel-Whitney class
w;i(B — @) = yv;—1(a, B) vanishes.

A second, more direct proof of claim (iii) can be based on (the discussion of)
Proposition 1.5. Using the same standard techniques as in (3.3) we obtain for

+d(u, —u) = w(R, (Rs,)") = [Z C P(e),7]
and for all 5 > 0 and ¢ € H*te-b-J(N)

& c(pa(d(u, —u))) = (27¢ | Z)[Z]
=t cwp_1 (A ® B[P ()]
=zl cwy_1 (A ® Blwr_a(A® oﬁ)[PL_1 x N]

::njc<2(b i)z "ty ) > b Fu (ot PP x N

i>0 k>0

=cY (a+k — ) Tr()Wp—a4j—k(B)[N]

k>0
=c(Vo—a+; (0, B) = JWp—0+;(8 — @))[N].
Note that the last summand to the right vanishes due to the existence of u. Thus

again we see that po(d(u, —u)) is trivial if and only if Vp—a+j(a, B) = 0 for all
3 >0. |



46 U. KOSCHORKE Isr. J. Math.

Next, let us study some of the formal properties of the invariants

(3.6) vi(e, ) =Y _(a+j)wj(@)wi_;(B), i€Z,

i20

defined for any vector bundies o and 8 over N (where a denotes the dimension
of ). Clearly we have

vi(@®R,BOR) =D _(a+ ]+ Duj(@)wi—;(6)
=v,-(a, ﬂ) + w,(ﬂ - a).

Therefore v;(c, 8) does not only depend on the K-theoretical difference 8 — a.

(3.7)

But there are further interesting interrelations with the Stiefel-Whitney classes
of f — a such as the following “mixed Wu formula”.

LEMMA 3.8: Forallie€Z

5q¢*(vi(a, B)) = w1 (B — Q)vi(e, B) + wiy1 (e, B) + awi11(B — ).

Proof: Using simple special cases of the standard Wu and Cartan formulas (see,
e.g., [MS], §8 and in particular problem 8-A), we obtain

Sq* (vi(e, B)) = D _(a + 5) @1 ()T (@)wi—;(B) + (j + V)Wi71(e)wi—;(B))
+ Z(a + 5) (w1 (B)w; (a)w;—;(B) + (¢ — j + 1)w;(@)wi—j+1(B))
= w1 (B — avi(e, B) + Y _((a+4 —1)j+ (a+5)(i — i+ 1))W()wi_j41(8)

and the lemma follows since

at+{(a+ij—Vji+(@a+)GE—7+D))=(a+7j) i |

Example 3.9: a = 1. If a is a line bundle and 8 has dimension b, then for all
i€
vi(e, B) = Z w1 (@) w;_ak(B) = wi(B - 20)

k>0

whereas w;(8 - a) = 3,54 wi (@) w;—;(B). In particular,
vp-1(c, ) = wp-1(a® B) and wp(B — ) = wy(a ® B)

(use, e.g., [K 1], 9.9, again). These invariants can have a precise geometric signifi-
cance already in very simple situations where they just measure 0-dimensional sin-
gularities. Assume, e.g., that b =n > 1. Given any monomorphism u: a! < 7,
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it follows from Theorem 3.2 that w is concordant (i.e., regularly homotopic in
B @ R) to —u if and only if

wn(B — 2a) = vy(a, B @ ]15) =0;

this condition holds automatically when w{(a® f# — TN) = wi(c) and hence the
concordance obstruction is an integer which lies in the image of A, and therefore
must vanish (compare formula (4.2') below). The special case 8 = TN has been
discussed in detail in [K 0].

§4. The weak stable obstructions

In this section we study the invariants d(u, —u) = forg, (d(u, —u)), w(&,B) =
fof;/g*(w(&, B)) and w(a, B) = forg, (w(a, B)). In particular, we prove Theorem E
and Proposition F of the introduction.

ForY = N (or N) and ¢ = ¢ (or &), let

(4.1) A: Qj(P® xY;0) — Q4 1(P® x Y0+ X), jELZ,

be the homomorphism obtained by taking zero sets of generic sections in (the
pullback — under the projection to P> — of) the universal line bundle A (com-
pare [K 3], (1.3)).

Then we have

(42) A@(, B)) =w(a, SO R), A@(@,B)) =&(% LS R)
and, if i: 8 — B @ R denotes the inclusion,
(4.2) Ad(u, —u)) = d(i-u,—i - u)

for every monomorphism u: o < f. This follows essentially by construction
(compare, e.g., the discussion preceding (I.1)).
Now consider the case a # b(2). Then

wi(p) = wi(A) + wi (B —a—TN)
and the second projection m: P* x N — N induces the isomorphism
(4.3) et Qe(P™ X N; )M (N)

onto unoriented bordism (see, e.g., proposition 1.3 in [K 3]). Adopting the no-
tation of (I.2) we conclude therefore that w(w, 8) = 0 if and only if all Whitney
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numbers of [Z,7|] € M, (N) vanish (see [CF], 17.2). But this holds precisely if
po(@(a, B)) = 0 since w(Z) = w™(4)|Z (by (I.1)) and, on the other hand,

wi(A)|Z = wi(Z) + wi(B—a—-TN)|Z.

Theorem 3.2 now implies those statements in Theorem E which concern w(w, 3).
The remaining claims follow in the same way, and so does Proposition F: just
note that the projection from N = 8! x N onto N induces a left inverse of incl,.

Next we turn to the remaining case a = b(2). Then wy(¢) = w1 (f—a—TN) =
wi(n) and we get the homomorphisms

(4.4) 0 (P™ x N; )25, (N; n) L5 Ho (N; Zy)

(where Z,, denotes the integer coefficient system which is twisted like the orienta-
tion line bundle of ; compare (1.12) and (1.15)). The isomorphisms in (I1.7) are
given by 7, and 7, o A (compare (4.4), (4.1) and (4.3)) or their analogues for N.
Now A maps our weak stable invariants of the pair (a,8) to the corresponding
invariants for (o, 8 ® R) (cf. (4.2) and (4.2")). Again, since a # dim(3 & R)(2)
and since vi{a, S @ R)~= v;{@, B) the previous discussion establishes all clNaims
in Theorem E and Ph;oposition F concerning the second, ,-components of our
weak stable obstructions.

Thus consider their images under 7, and the Hurewicz homomorphism g (cf.
(4.4)). We know from [K 1], 5.3 and from Poincaré duality that

poT(d(u,—u)) =0 iff &(u,—u) =0, and
4 Of*(w(aaﬂ)) = 0 lﬂ E(Ol, ﬂ) = 0

Now assume that for some dimension j every element of Q;(N;n) is entirely
determined by its image under p, together with its Whitney numbers (and its
Pontryagin numbers if w;(n) = 0); this holds, e.g., if j < 4 or if condition
(iii) in Theorem E is satisfied (see [O], 0.13, and [CF], 17.5). Then, given any
element w = [Z, g,7] of ;(P(a); $), its image @ := forg, (w) vanishes precisely
if A(@) = 0 and p o7, (w) = 0. Indeed, the stable vector bundle isomorphism g
implies again that TZ = —g*(¢) € K(Z) and therefore w(Z) = g*(w($))! (and
p(Z) = g*(p(¢))~* = (7 0 g)*(p(n))~! modulo cohomology classes of order 2);
hence the characteristic numbers of 7, (@) factor through A(w) and g o7, (@). In
the special cases when w equals w(a, 8) or d(u, —u), this implies the corresponding
vanishing criteria in Theorem E.

The same argument applies also to w(a, 8). Moreover, note that the boundary
endomorphism 3, in diagram (I.7) is given by multiplication with +(1 — (—1)%)
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(compare (1.3)). Thus in the case a = b = 1(2) (when wy (%) # w1(n)) the vertical
exact sequence to the right hand side in (I.7) contains the exact sequence

S Du(Nn) e TS X N ) S D (V)
~ I

~
~
~
~
~

BN

> ﬁk(N;n)

" (4.5)
N (V)

as a direct summand and the vanishing criterion for w(a, 8) follows as before (use
also the generalized Rochlin theorem 16.2 in [CF] and Lemma 3.8). In the case
a = b = 0(2) we have: w;() = wi(n),d, = 0 and incl, is even split injective,
again with a left inverse induced by the obvious projection. Thus @(a, ) can be
decomposed into @(e, ) and a second component which is always well defined
and which agrees with d(u, —u) whenever v exists.

Finally, observe that by (4.2) and the previous discussion
w(e, ) =w(@ @R, O R) = A[@(a &R, H))

is the image of an element of order 2 and so is @W(a, 8). This completes the proof
of Theorem E and Proposition F. ]

§5. The singularity sequences and some examples of injectivity and
existence criteria

The singularity approach allows one not only to decide existence and classifica-
tion questions concerning (antipodal) monomorphisms, but it also offers powerful
tools for the study of low-dimensional normal bordism groups (see, e.g., the ex-
act sequences in [K 1], 9.3, and [K 3], 3.1). We will use them in this section
to obtain a few concrete applications and illustrations of the general results de-
veloped so far. In particular, we will be interested (in some sample cases) in
injectivity criteria concerning 9, (and hence d(u, —u)) as well as forg. We will
also spell out a few specific existence conditions for antipodal monomorphisms
even in cases where higher order obstructions have to be determined by rather
involved geometric arguments. This will then be used to discuss Example G of
the introduction.

For most calculations it is important to know the first two Stiefel-Whitney
classes of the coefficient bundles ¢ and ¢ (cf. (I.3) and (1.6)). By standard



50 U. KOSCHORKE Isr. J. Math.

computations we obtain in H*(P® x S! x N)

wi(¢) = (a+b)z +wi(n) +ay and
6 w@®= (") + 2V + 04 b+ D) + sl
+ y(abz + wi (@) + awi (7))

(where z = w1 (\) and y generate H1(P>) and H'(S') ¢ HY(S x N), resp.; cf.
also (1.12)). Restriction to P(@) and to P(a) C P® x N C P® x §! x N yields
the desired formulas, e.g., also for ¢ (where we just have to drop the y-term).
We will illustrate our theory in the case (a,b) = (3,n + 1).
First consider the special setting where o and 8 are (real) vector bundles of
dimensions 3 and n + 1 over complex projective space N* = CP(q). Denote
by A1 = A¢ € €91, A_; = Ac and )i the canonical complex line bundle over

CP(qg), its complex conjugate and its complement in C9%!, respectively. Also,

recall the well-known complex isomorphism

(5.2) TCP(g) = Homc (A1, Af) 2 A1 ®c Ay

(see [MS], p. 169). Finally, fix the generators z = ¢;(A;) and 22 = wa(A1) of
H?(N;Z) and of HX(N) := H?(N; Zs). Then wi(¢) = 0 and

(5.3) wa(4) = (¢ — 1)a” + wa(n)

where wa(n) = (g + 1)z2 + wa(a) + wa(B).
As in [K 3], 3.1, the singularity sequence in theorem 9.3 of [K 1] gives rise to
the exact sequences

Ga) M) 2Do; 62,530, (P(a); ) B0(N) 2V 2,

and

GA) 2,050, 1= 0y (P x N x BO2); ¢+ T) Lo Hy (P®) = 25— 0
where f] is bijective if and only if ws($) # 0. Here we use canonical isomorphisms

Q3(P® x N; ¢) = Ma(N) = Hy(N) © My = Zy ® Zo
(5.5) and
D (P™ x N;¢) = Qa(N) = Hy(N;2) —> Z.
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The first homomorphism in (5.4) is determined by standard calculations (using,
e.g., [K 3], 0.18, 1.6 and 2.2) as follows: for any bordism class s = [g: § — N| €
My (N) we have

floaja(s) =(g + Vwi(8)2[S] + g (wa(n))[S];

(5.6)
7(s) =w1(S)?[S] + g* (wa())[S].

In particular,
(5.7 h:=fioojz+ (g+1)7: MNy(N) — Zy

is obtained by evaluating wa(n) + (g + )wa(a).

Now we are ready to analyze the endomorphism 92 of Qa(P(a); ¢) (cf. (1.7))
which plays such a central role in the classification of monomorphisms — antipo-
dal or not (see Theorem D).

PROPOSITION 5.8: Let o and 29! be vector bundles over N = CP(q),q > 1.
The following conditions are equivalent:
(i) 02 is injective on Qq(P(a); ¢);
(ii) forg, is injective on Qa(P(a); ¢); and
(iil) qua{a) + wa(B) + w2(N) # 0.
If these conditions do not hold, then ker 0y = Zo; moreover, ker forg, is isomor-
phic to Zy & Zs or to Z2 according as wo(¢) vanishes or not, respectively.
In any case, forg, is onto if and only if wy(a) + wa(B) + wa(N) = 0.

Proof: Since bis odd, 8, is multiplication by £2 and hence injective on Qa( P> x
N;¢) 2 Z (compare (1.7), (1.3) and (5.5)). Therefore kerd; C ker 3, o forg, =
ker forg,.

If condition (iii) holds or, equivalently, A # 0 (cf. (5.7)) then (f{ 0 gj3,7) maps
onto Zy ® Zs; in particular, the homomorphism fi o oj3 (which evaluates wa(¢),
cf. [K 1], 9.3) is nontrivial and therefore so is wa(¢). Thus f is an isomorphism
(cf. (5.4')) and forg, and hence J; must be injective (cf. (5.4)).

If h = 0 but still wa(¢) # 0, then the image of (0j3,7) in O1 B Zy X Zoa & Zo
is Zy(g + 1,1). Hence ker forg, consists of two elements which are fixed by the
involution (—idg).. It follows that 9y = +((—idg). — id) = 0 on ker forg, and
ker 07 = ker forg, = Z, in this case.

Finally, assume wa(¢) = 0. Then by an observation of C. Olk (see the footnote
on p. 94 in [K 1)) ojz3 = 0, and kerforg, = ©; has four elements (compare
(5.4) and (5.4")). Actually, replacing N by a single point in the whole preceding
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calculation we see that
01 X Q2(P% (b — a)X\) 2 moq(Vap) X Zo @ Zo

(use also [K 1], 5.4, and Paechter’s tables [P], p. 249). For similar reasons
as outlined above, (—idg), fixes ker f{ = Zjz - §1(1) so that J, vanishes on
§ 0 47(1). But if a bordism class u = [S',g,g] € ©; has a nontrivial image
fi(w) in Hy(P®) = Zg, then §(u) is not annihilated by 0q; in fact, a simple
geometric argument involving a punctured cylinder §* x I-small disk shows that
82(6(u)) = § 0 87(1) (for more details see the proof of theorem 2.2 in [KMS]).
Thus again ker 05 consists only of two elements.
The last claim in Proposition 5.8 follows directly from (5.4). |

Along the lines of the proof above, precise bijectivity conditions for forg can be
worked out in much more general settings. In turn, they give rise to antipodality
criteria. Indeed, easy diagram chasing proves the following

OBSERVATION 5.9: Assume that forg, in diagram (L.7) is an isomorphism for
some integer k. Then

(forgy,, h): 2 (P(@); §) — (P x N;¢) & U_1(P(a); 9)

is injective. In case k = n + a — b we have in particular: w(&, 8) = 0 if and only
if both w(w, B) and @W(&, B) vanish.

However, this isomorphism assumption (used for a purely algebraic argument)
is usually far too restrictive. Additional geometric input allows us sometimes in
much more general situations to decide precisely when the necessary conditions
w(a, B) = 0 and w(a, f) = 0 are also sufficient for the existence of an antipodal
monomorphism or when (and which) extra obstructions come into play.

For an illustration, we discuss a setting where two higher order obstructions
(with values in Z;) may play a role and where we can always eliminate one of
them by a geometric trick in the spirit of Proposition 1.5.

THEOREM 5.10: Let o® = o/ ® R and B™t! be vector bundles over a manifold

N of even dimension n > 4, where o' is a complex line bundle and H{(N) :=
H,(N;Z3) = 0. Assume that w(a, 8) and wn—2(8 — a) vanish.

Then w(a,B) # 0 if and only if wa(n) = 0 on all elements of order 2 in
H,(N;Z), but there exists € € Hy(N;Z) and a monomorphism u: a — f3 such
that wo(n)(€) # 0 and 2€ is equal to p(@(R, u(a)t)) (ie., to the Poincaré dual

of the Euler class of the cokernel bundle u(a)t of u).
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Proof: Here clearly wa(n) = wa(a)+wa(B8)+wa(N) (cf. (1.12)). Also, vi(a, B) =
w;(B — ) for all ¢ € Z so that the assumption above is equivalent to w(a, 3) and
w(a, B) being trivial (by Theorem E and Lemma 3.8).

Now consider the analoga of the sequences (5.4) and (5.4') for N and N =
S' x N. Since wa($) = zy+ - # 0 (cf. (5.1)), f is bijective and we obtain the
commuting diagram of horizontal and vertical exact sequences

(5.11)
€
(Pla)d) —— Soy(v) 220
0. -2
d
LrD L e e, S u(P(a); ¢) — Qu(N) 2
l(&f{)@idzz inclp ncly
LRD H(S') @ 1 (P®) © Za— Qy(P(@);d) — > By(P¥ x N ) — -
lrh’ th M

wa(n) forg,

Zy 0 (P(a); 8) U (N)®M(N) =0

(compare (1.7)).

Since w(a, 8) = 0 we may choose d ¢ incl; ' (w(@, 8)) and even a monomor-
phism u: a <> 8 such that d = d(u, —u) (cf. Theorem D). But—because of our
assumption on o —this difference invariant has a very special form: it lies in the
image of the homomorphism

v: Q2(N;n) — Qa(P(a); @)

induced by the inclusion N = P(0 x R) C P(a). Indeed, due to the complex

structure of o/ we can rotate u | @' in its image to —u | &’. So it remains only
to deform u | R in the complement u(a’)* (of u(e’) in 8) to —u | R. As in

Proposition 1.5~we see that
(5.12) d = d(u, ~u) = Ti (WR,u (@)*)).

This suggests to consider also the exact singularity sequence {cf. [K 1}, 9.3)

1

(5.13) 2 2050 (N ) 825 0y ()
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which is compatible with (the generalization of) (5.4) and (5.4') via 4,; the
H,(P>)-term in (5.4") plays no role here and hence the ©;-term takes the form
Z, - 87(1) and vanishes precisely if wq(n) # 0.

Now recall that by assumption 0 = @(@, ) = incly(forg,(d)). Therefore we
may choose € € (25(N) such that 26 = forgy(d). If wq(n)(€) = 0 and hence
€ = forgy(e) for some bordism class e € Qy(P(a); ¢), we may replace d and u by
d and @ in the whole previous discussion where

d=d(@,—1) :=d — d,(e).
But then
0 = forg,(d) = + forg, oi, (w(R, &(a)1))

and d is a multiple of 461 (1), which may survive in Q,(P(a); $) but certainly

doesn’t in (P (a); @) (because wa(¢) # 0).

We conclude that w(@, 8) = incl,(d) vanishes provided the element € € Q3(N)
discussed above can be chosen so that wa(n)(€) = 0. This is certainly the case
if wy(n) = 0 on all of Qa2(N) or wa(n) # 0 on the elements of order 2 in Qa(INV).

Otherwise, diagram chasing in (5.11) shows that
(5.14) W= wa(n)(€) € Zy

is a well-defined extra antipodality obstruction (and actually the only one), in-
dependent of the choices of d and € For example, given any monomorphism
u: o = f (whose existence is gnaranteed by Theorem A), put d = d(u, —u) (so
that by (5.11)—(5.13)

+ forgy(d) = forgy(w(R, u(@))) = TR, u(e) ") € 2- Q(N))

and obtain @ by evaluating wo(7) on any element € € Q(N) such that 22 =
@(R,u(a)t). Note that this last expression corresponds to the Euler class

e(u(a)t) via Hurewicz and Poincaré duality isomorphisms (cf., e.g., [K 1], 5.3).

Remark 5.15: In the proof above we have dealt with that part of the anti-
podality obstruction w(&, 8) which lies in ker fof\r/g2 and hence in the image of
H{(S') ® H1(P*) (see the left hand term of the middle line in diagram (5.11);
the summand Z, plays no role in Q3 (P(&); ¢) since 7 is onto as in (5.6)). Our
extra invariant @ (cf. (5.14)) is well-defined precisely when the H;(S*)-part of
w(@, B) is defined without indeterminacy but does not survive in w(a,f) via
, and then these two Zy-obstructions coincide. The H;(P)-part of w(a, f)
vanishes due to the special form of . 1
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It remains to make the condition w{e, 8) = 0 more accessible — at least in
some interesting cases.

PROPOSITION 5.16: Let o® = o @ R and g"t! = 3’ ® R be vector bundles over

an n-manifold N™ of even dimension n = 2¢q > 4 (where o and ' are complex
vector bundies).

In case n = 0(4), w1(N) = 0 and wa(a) + wa(B) + we(N) = 0 on Hy(N;Z), we
have: there exists a monomorphism from « to 8 if and only if

cq(B' — ')[N] = 0(4).

In all other cases, such a monomorphism exists precisely if w, (8 — a) = 0.

Proof: Given a generic complex vector bundle homomorphism u': &' - 8 (or,
equivalently, a generic section of the homomorphism bundle Hom¢(c/, 8')), we

may push all its zeroes into a small ball B C N and then count them algebraically
by
cq(= cq(B' — o) [N} = ¢g(Home (¢, ) [N]) € Z = 1y (S"71)

(at least if N is orientable). The corresponding homomorphism u: &' ®R — /&R

has local obstruction j,{c,) where the composite map
jl Sn—l — Vn72 C Vn+173

between Stiefel manifolds involves the complex structure on R* = C9.

According to Paechter’s tables (cf. [P), p. 249) m,,~1(Vay1,3) is isomorphic to
Zy and Zy @ Zy if n = 0(4) and n = 2(4), respectively. Under the inclusion
i B C N this corresponds to the group built up from the Zo-terms in the
singularity sequence

Qa(N;9) & M (N)ZBZy — Q(P(@); ¢) — Q1 (N;n) @ Zy — 0.

If 6j2 # 0 or n = 2(4), then the global obstruction w(a, ) = i.j.(cq) contains
precisely as much information as its image in the Zo-term to the right, i.e.,
wr (B — a)[N]. However, if n = 0(4) and 0j; = 0 (i.e., w1(N) =0 and wz(n) =0
on Hy(N;Z)), then

Z.*: 7rn,—1(V'n+1,3) = Z4 7 Ql(P(a)’ ¢)

maps the mod 4 class of ¢4 injectively to w(a, §). |
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Finally, let us apply the results of this section to the situation in Example G
of the introduction: & = o' ®R and 8 = B’ ® R where o' and ' are the complex

bundles A, and ®Xp, over N = CP(q),q > 2. As in (5.3) put 2 = ¢;(A1) and
29 = wa(A1). Then we have

wy(n) = (p+Ip; + ¢+ 1)z and
cg(B — o) =@ ®cp) = H(p,- —p)2L.

First assume that p; = p(2) for some ¢, say ¢ = 1, or, equivalently, that

wn (8 — o) = [ (pi — p)24

vanishes. Then so does w(a, B) except when py —p=2(4),pa =--- =pg # 0(2)
and p = ¢ = 0(2) (see Proposition 5.16). But this exceptional case gets excluded
anyway if we require the (n — 2)-dimensional part of

w(B — o) =(1+pz) ™" - [[(1 + pize)
=(14paz2) ... (1 + pg22)

to be trivial. Thus w(e,3) and @(a, ) — or, equivalently, w,(8 — «) and
wn—2(f — &) — vanish precisely if p; = p(2) and p; = 0(2) for some i # j.
By Theorem 5.10 this necessary condition is also fully sufficient for the exis-
tence of an antipodal monomorphism except when w2(n) # 0, and hence the
parity of € = 2PD (e(u(a)t)) defines the extra obstruction @ (cf. (5.14)). For
example, if p; = p and pa = 0(2) but wa(n) # 0, then we may choose u so that

u(o)t = Xp, @ ... @ Ap; thus in this special case & = 0 precisely if

Cq—l(“(a)l) =Dp2.. -pqzq_1

is divisible by 4.
The classification statement in Example G follows from Proposition 5.8. ]

§6. Nonstable and stable tangent plane fields on complex projective
spaces

In this section we will prove the statements which were listed in Example H of
the introduction.

Let p and g be integers, ¢ > 1. As before, A, will denote the p-fold (complex)
tensor power of the canonical complex line bundle over N* = CP(q), 2z := ¢1(\1)
and zz := wa(A1).
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A complex monomorphism from A, to TN exists precisely if the homomorphism
bundie

Homc(Ap, TN) 2 X, ® (A1 ® A})

(cf. (5.2)) has a nowhere vanishing section or, equivalently, a trivial Euler or top
Chern class c¢4. The total Chern class equals

c(Hom(Ap, TN)) =c(A_p, ® A1 ® CTH! = A_y)
=((1 —pz) = 2)7 (1 - pz) 7!

L (g+1 i \a—i

=3 (411) a-partar
Its top component
(6.1) 2«1: (q + 1) b (—z)e

i\t
vanishes precisely if p # 0 and
N (g+1) 41
plg(iﬂ)p:(lﬂ))" -1=0,

i.e., if p = —2 and ¢ odd. This proves the existence claim in Example H, (i),
whenever ¢ > 1.
A similar but simpler mod 2 calculation shows that

(6.2) wn(TN = Ap) =0

if and only if p = 0(2) and ¢ = 1(2). This necessary condition for the existence
of a real monomorphism A, < T'N (nonstable or not) implies also that

wa(pc) = wa(A-p &c TN —TN) =pgza =0

and
wy(¢) = (¢ - D+ pzy =0

(cf. (5.1)). Hence for ¢ > 2 it follows from [K 4], 4.3, that a (nonstable) real
monomorphism from A, to T'N exists precisely if p is even and

taq(Hom(h, TRV = g+ 1+ (77 1) = 0020
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(compare (6.1)); for ¢ = 4r — 1 (and g = 4r + 1, resp.) this just means that

+1
g+1= _(q 5 )p: —2r(4r —1)p =0 (2p)
(and ¢+ 1= —(2r + 1)(4r + 1)p (2p), resp.). This proves the existence claim in
Example H, (ii).

In view of the observation (6.2) the remaining existerice claims in (iii) and (iv)
now follow from Proposition 5.16 and Theorem 5.10 and from the fact that for
even p

-2} S R,TCP(0) 8 B) = un-a(CP(@) = (73 )4

Finally, recall (from [K 4], 1.5 and 4.6) that complex monomorphisms A, <+
TN —if they exist and if ¢ > 2— correspond to the elements of Q4 (N; ¢¢) = Zo;
moreover, the transition homomorphism gs to Q2(P(a); ¢) is injective and has
cokernel Z,. This completes the proof of the statements (i) and (ii) in Example
H. In addition, we conclude that if two complex monomorphisms are regularly
homotopic in the real sense then they allow also a complex regular homotopy.

The remaining enumeration statements in Example H follow from Theorem D,
(5.4), Proposition 5.8 and (1.4). 1

Example 6.3: Given ¢ > 1, q odd, a real monomorphism from A, to TCP(q)
exists at least if p = +2. Here is a complete list of all other such p for a few low

values of g.
qllor3|S5orll| 7 [(9o0rl19 |13 or27 15 17 or 35
p| — +6 (4| £10 +14 |+4or+8|L6o0r+18
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